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Abstract 
Simulations of vapor-liquid equilibrium (VLE) are widely used given their impact on the scale, design, and extrapolation of different 
operational units. However, due to a number of factors, it is almost impossible to experimentally study each of the VLE systems. VLE 
simulations can be developed using representations that are strongly dependent on the nature and interactions of the compounds forming 
mixtures. A model that helps in predicting these interactions would facilitate simulation processes. A Gray Box Neural Network Model 
(GNM) was created as Binary Interaction Parameters predictors (BIP), which are estimated using state variables and information from pure 
components. This information was used to predict VLE behavior in mixtures and ranges not used in the mathematical formulation. The 
GNM prediction capabilities (including temperature dependency) showed an error level lower than 5% and 20% for mixtures considered 
and not considered in the training data, respectively.  
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Modelamiento de equilibrio Líquido-Vapor usando redes neuronales 
grises como predictor de parámetros de interacción binaria 

 
Resumen 
Las Simulaciones de Equilibrio Líquido Vapor (VLE) son ampliamente utilizadas dado su impacto en el escalamiento, diseño y 
extrapolación de diferentes operaciones unitarias. Sin embargo, dado considerable factores, es casi imposible experimentalmente estudiar 
cada uno de los sistemas de VLE. La simulación de VLE puede ser desarrollada utilizando representaciones que son fuertemente 
dependientes de la naturaleza e interacción de los compuestos que conforman la mezcla. Un modelo que ayude en la predicción de esas 
interacciones facilitará el proceso de simulación. Una Red Neuronal Gris (GNM) fue creada como un predictor de parámetros de interacción 
binaria, los que son estimados utilizando variables de estado e información de componentes puros. Esta información fue utilizada para 
predecir el comportamiento de VLE en mezclas y rangos no utilizados en la formulación matemática. Las capacidades predictivas del GNM 
(incluida la dependencia de temperatura) mostraron errores menores al 5% y al 20% para mezclas consideradas y no consideradas en los 
datos de entrenamiento, respectivamente.  
 
Palabras clave: Sistemas Acetona-Alcohol; Peng-Robinson; Evaluación no-lineal; predicción ANN. 

 
 
 

1.  Introduction 
 
Simulations of vapor-liquid equilibrium (VLE) are 

widely studied and used in the industry, given the impact that 
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simulations have on the unit operations of purification and 
separation [1]. The design of these unit operations is not 
possible without estimating equilibrium, where temperature, 
pressure, chemical nature, and concentrations are correlated 
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by empirical, semi-empirical and/or phenomenological 
relationships. The equilibrium between phases is established 
once there are no observable variations in chemical, thermal, 
and force potentials between each phase under consideration. 
The chemical potential equality is normally expressed in 
terms of fugacities (f ̂) and equalities of each component i in 
each phase under consideration [2]. 

At low pressures, the gas phase and the liquid phase 
fugacities can be represented in function of fugacity 
coefficients (ϕ). Both terms, ϕi

V and ϕi
L (fugacity coefficients 

in the vapor (V) and the liquid (L) phase, respectively) can be 
expressed by using a suitable Equation of States (EOS), such 
as Peng-Robinson, van der Waals, Soave-Redlich-Kwong 
(SRK), among others, and the representation of partial 
properties (Equation 1):  

 
𝐿𝐿𝐿𝐿𝜑𝜑𝑖𝑖 = 1

𝑅𝑅𝑅𝑅 ∫ ��𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
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In Equation 1, Z is the compressibility factor; the 

derivative part represents the partial derivative of component 
i keeping the temperature, volume, and the moles of the other 
components constant.  

Each EOS can hold important information about mixture 
behavior, such as the Peng-Robinson ai and bi coefficients. 
When mixtures are modelled, mixing rules, which account 
for molecular interactions, are needed. Equations 2 and 3 
show the modified van der Waals mixing rules, where am and 
bm are the EOS coefficients of mixture and kij is a temperature 
dependent binary interaction parameter (BIP) [2]. The BIP 
holds the dissimilar molecular contribution information 
needed for mixture representations.  

 
    𝑎𝑎𝑚𝑚 = ∑ ∑ 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗𝑎𝑎𝑖𝑖𝑖𝑖𝑛𝑛

𝑗𝑗
𝑛𝑛
𝑖𝑖         𝑎𝑎𝑖𝑖𝑖𝑖 = �𝑎𝑎𝑖𝑖𝑎𝑎𝑗𝑗(1 − 𝑘𝑘𝑖𝑖𝑖𝑖)      (2) 

 
   𝑏𝑏𝑚𝑚 = ∑ 𝑥𝑥𝑖𝑖𝑏𝑏𝑖𝑖𝑛𝑛

𝑖𝑖                                     (3) 
 
Artificial Neural Networks (ANNs) are normally used as 

a predicting tool, where knowledge of phenomenological 
representations is not important. Nevertheless, due to the 
huge quantity of internal parameters that may be used in an 
ANN, over-fitting and poor generalization problems can be 
observed [3]. A Hybrid Neural Network, also known as Gray-
Box Neural Network Model (GNM), can be considered as an 
improved ANN, which incorporates 
phenomenological/empirical equations in its architecture. In 
fact, the GNM can be thought of as a hierarchical network of 
sub-networks. The sub-networks are assigned to perform 
small calculations restricted by some physical-chemical 
constraints, such as mass and energy balances [3]. The 
incorporation of restrictions not only improves the general 
prediction of the modified network; it also improves the 
extrapolation capabilities.  

GNMs have been used for a wide gamut of applications, 
such as fed-batch bioreactors [3], Williams-Otto reactor [4], 
maximization in methanol conversions [5], wastewater 
systems [6], and empirical improvement of equations of state 
[7], among others. 

Regarding VLE, classical ANNs have been applied to 
determine pressure (P) – temperature (T) – liquid (xi) or vapor 

(yi) molar fractions relationships at equilibrium [8-12]. A 
different approach was proposed by Urata et. al. [13]. In their 
work, activity coefficients were estimated by separating the 
calculation in two independent ANNs and using pure 
component data as ANN input information: the normal 
boiling point divided by molecular weight, critical density, 
and dipole moment. Even though the estimations showed low 
deviations, thermodynamic inconsistencies were observed. 
Ramírez et al. [14] developed an ANN capable of 
determining the four-suffix Margules parameters. The ANN 
training was performed using a group-contribution 
methodology where the ANN input variables were the 
number of interactions between different functional groups, 
the pressure, the temperature, the functional group quantities, 
the molecular weights, and the mole fractions. The proposed 
methodology represented the VLE correctly, but their results 
showed local minimum issues. 

In the present work, a methodology that incorporates a 
suitable EOS (Peng-Robinson Equation of State; PR-EOS) in 
the formulation of a GNM is presented in order to predict the 
VLE. Specifically, the aim of this work is to determinate 
binary interaction parameters by using pure component data 
and an EOS represented in a neural-network-like structure. 
Additionally, in order to achieve the main objective, common 
activation functions were replaced by complex mathematical 
formulations (including iterative estimations). The last 
modification can be seen as a methodology to improve the 
applicability of GNMs. Simple hydrocarbons mixtures were 
considered for the GNM evaluation. VLE information was 
used for GNM training, VLE extrapolation, and binary 
interaction parameters prediction. The GNM predicted 
binary interaction parameters, extrapolated VLE information 
(with deviations on average lower than 5%) and, to a certain 
degree, determinate VLE of mixture not considered in the 
GNM training (deviations on average lower than a 20%).  

 
2.  Materials and methods 

 
In the Present work, Matlab 7.1 was used as simulator. 

This version was used given its simplicity at the moment of 
modifying ANN/GNM functions and parameters (activation 
functions, transfer function, and training process 
methodologies). The embedded ANN toolbox was used in the 
programming. For a proper and simpler creation/evaluation 
of the GNM, VLE data from binary systems (Acetone-
Butanol at 99.46 kPa [15], Acetone-Ethanol at 101.33 kPa 
[16], and Acetone-Methanol at 13.33 kPa [17]) were used. 
The data was composed of yi-xi-P-T information and the 
boiling points, molecular weight, molecular diameter, critical 
pressure, critical temperature, and acentric factor of each 
component. Furthermore, since VLE information for the 
three systems is limited in the literature, interpolation of the 
yi-xi-P-T data was performed (by using the PR-EOS and a 
lineal correlation temperature dependency of the predicted 
BIP) in order to obtain 500 total data points useful for training 
and validation of the GNM. 

 
3.  Thermodynamic modeling 

 
As previously specified, the PR-EOS (Equation 6, where a 



Vyhmeister et al / Revista DYNA, 84(203), pp. 226-232, December, 2017. 

228 

and b are adjustable parameters) was used in the formulation of 
the GNM. Different EOS could have been used; nevertheless, the 
PR-EOS was chosen for its simplicity (parameters determination 
from critical properties and acentric factor) and improved 
representation of some liquid properties [18].  

 
𝑃𝑃 = 𝑅𝑅𝑅𝑅

𝑉𝑉−𝑏𝑏
− 𝑎𝑎

𝑉𝑉(𝑉𝑉+𝑏𝑏)+𝑏𝑏(𝑉𝑉−𝑏𝑏)
   (4) 

 
As extensively described in the literature, for a pure 

component, both parameters can be determined by using 
critical properties and temperature corrections.  

By combining equations 1 and 4, the fugacity coefficient 
for the liquid phase can be calculated (Equation 5) where, Zliq 
is the compressibility factor of the liquid phase. The 
expression for the vapor phase fugacity coefficient is similar 
to Equation 5, but representative values of the vapor phase 
have to be used (i.e. Zvap, Vvap, and yi; [2]). 
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1−0.414 𝑏𝑏𝑚𝑚𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙

�     (5) 

 
The previous equation needs the gas or liquid phase 

compressibility factor, which is obtained from the PR-EOS 
cubic expression (Equation 6; [2]). In Equation 6 A is equal 
to amP /R2T2 and B is equal to bmP/RT. 

 
𝑍𝑍3 − (1 − 𝐵𝐵)𝑍𝑍2 + (𝐴𝐴 − 2𝐵𝐵 − 3𝐵𝐵2)𝑍𝑍 − (𝐴𝐴𝐴𝐴 − 𝐵𝐵2 −

𝐵𝐵3) = 0 (6) 
 

4.  Gray box neural modeling 
 
The theory behind artificial neural networks will not be 

thoroughly discussed here; more information can be found in 
references [19-20]. As mathematically proven by Cybenko 
and Hornik et al. [21-22], a Feed-Forward-Neural-Network 
(FFNN) with a single hidden layer can approximate, with a 
high degree of accuracy, any non-linear function. Even 
though ANNs can correctly approximate non-linear 
functions, they are classified as data-based models, which 
imply that the prediction is based on specific data sets. The 
use of data sets allows good estimation of variables inside the 
same data set limits, but extrapolation cannot fully be trusted 
given the lack of boundary restrictions. 

GNMs, on the other hand, have proved to reduce the 
previous problems by embedding phenomenological 
equations in a Neural-Network-like architecture. In this 
architecture, the ANN focuses on phenomenological 
parameter determination while the phenomenological 
equation helps in the extrapolation, interpolation and/or 
boundaries application (recognized as series configuration). 
Further benefits, such as the reduction of neural internal 
parameters, better starting points for training, reduction of 
over-fitting, improved network adaptation, and improvement 
in generalization have been observed [3]. 

 

5.  PR-EOS gray box neural model generation 
 
The first step in the GNM creation is the architecture 

definition. Fig. 1 shows the PR-EOS GNM architecture. As 
defined in this work, and observed in Fig. 1, different artificial 
neurons (circles) are interconnected at different levels in order 
to create a neural architecture specific for the problem 
formulation. The dashed box in Fig. 1 represents an embedded 
ANN, which is a classical ANN that possesses one Input Layer, 
one Hidden Layer (HL), and one Output Layer (OL). The 
embedded ANN, which possesses parameters that have to be 
estimated during the training process, has a FFNN architecture. 
The number of parameters has to be optimized in order to 
produce a useful output; that means, to define the most suitable 
number of neurons in the hidden layer to generate the binary 
interaction parameters (10 neurons in the HL in the present work 
with Hyperbolic Tangent Sigmoid as transfer function; this 
number was obtained by finding the minimum number of 
neurons in the HL that produce an unaffected goodness-of-fit 
statistics). It must be highlighted that the training process is 
performed by the back propagation technique; therefore, no 
BIPs are needed in order to perform the training independently 
of the embedded ANN estimate output (the BIP). By 
considering the defined architecture, the VLE information 
(which is the global output) will be transformed as it is back 
propagated in the GNM to estimate the BIPs. The input 
information of the embedded ANN was chosen based on pure 
component information and the recognition that the embedded 
ANN outputs are a function of the temperature. The selection of 
different inputs can be modified easily. In fact, to estimate binary 
interaction parameters, an optimization process of the input 
information could be performed in order to determinate the most 
suitable pure component and/or group contribution data useful 
to obtain the best non-linear mathematical representation. In the 
present work, the embedded ANN Input information are the 
pressure, temperature, boiling points (BPi), molecular weights 
(MWi), and molecular diameters (MDi) of each component i in 
the mixture.  

 

 
 
Figure 1. Architecture definition of the PR-EOS GNM (to avoid an unclear 
representation, only 5 neurons have been represented in the HL). 
Source: The Authors. 
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The embedded ANN output is defined in the architecture 
by a proper representation of the phenomenological equation 
in a neural-network-like architecture. In a GNM, different 
mathematical operations must be used to fully represent the 
phenomenological equation. Mathematical operations, other 
than classical ANN operations (such as roots, logarithms, 
exponentials, among others), can easily be programmed by 
specifying the mathematical expression in a neuron transfer 
function or in a neuron activation function.  

Following the Fig. 1 architecture, once the embedded 
ANN calculation is performed (kij), the information is 
forwarded to two neurons (ϕi

L and ϕi
V) followed by a third 

neuron (equal fugacity that estimate yi). The most important 
characteristics of these neurons are: 
• Each input signal is unweighted (weight equal to 1). The 

weights are kept constant during the GNM creation by 
modifying the training algorithms (the values of the 
weights are restored after the modifications performed by 
the Levenberg-Marquardt Backpropagation training 
process). 

• The identity transfer functions are used in each neuron. 
Therefore, each neuron output is the evaluation of the 
activation function, where the bias was set to 0.  

• The activation functions are replaced by a set of equations 
rather than one equation. The set of equations allows the 
estimation of fugacity coefficients (as described from 
Equation 1 to Equation 6) or the vapor phase mole 
fraction (obtained by fugacity equality, ϕi

L xi / ϕi
V = yi). 

The inputs of a neuron, in the phenomenological 
representations, are useful variables for the full 
estimation of important parameters/variables of the VLE 
representation. 
Both neurons ϕi

L and ϕi
V are representation of Equation 

5, where the information of kij, critical properties of each 
component (PCi, TCi), acentric factor of each component (ωi) 
, and mole fractions (yi or xi, depending on the phase that is 
intended to be represented) are used as feed to the neurons. 
Additionally, in the same neuron the mixing rules are used to 
estimate am and bm, and the PR-EOS in its cubic form, to 
estimate Zliq or Zvap. The estimation of both compressibility 
factors was performed by the software by evaluating the 
cubic equation roots. For the estimations of fugacity 
coefficient, the higher root was used for the gas phase, while 
the lower root was used for the liquid phase. After the 
estimation of both fugacity coefficients, the VLE is 
calculated by the neuron fi

V=fi
L which corresponds to the 

equilibrium representation. Specifically, in this neuron, the 
inputs are the liquid and vapor fugacity coefficients of 
component 1 (in a binary system) and the molar fraction of 
the liquid phase. By using the equilibrium representation, the 
molar fraction of component 1 in the gas phase is estimated. 
The yi information is used as feed and estimated as output in 
the GNM. Independent of this recursive architecture, it must 
be kept in mind that the main objective is to find an embedded 
ANN able to determinate binary interaction parameters with 
phenomenological restrictions (EOS). 

Once the architecture was specified, the GNM training 
was performed together with the optimization of the number 
of neurons in the HL. The training process corresponds to the 
determination of the ANNs internal parameters (weights and  

 
Figure 2. Procedure for PR-EOS GNM modeling 
Source: Adapted from [23] 

 
 

bias of each neuron) by performing sensitivity analyses on an 
objective function, which is optimized by different methods. 
After calculation of the new weights, the fixed GNM weights 
were restored to their values by using a modified version of 
the Matlab algorithm (trainlm). 

As a methodological resume of the GNM creation, Fig. 2 
is incorporated. This figure could help to better understand 
the creation process and to use it in the case that other VLE 
representations are intended to be used. The dashed line box 
represents the typical process of the classical ANN 
parameters selection, which could include selection of neural 
network type, number of hidden layers, training algorithm 
selection, activation function, and others [24]. In the present 
work only the number of neurons in the hidden layer was 
modified as an improvement parameter.  

 
6.  Results 

 
Fig. 3 and Fig. 4 shows the results obtained (estimations 

of yi values, represented in yi-xi-T graphs) by applying the 
GNM after being trained with the VLE data sets of different 
Acetone-Alcohol mixtures at different pressures. Fig. 3 
shows the full data set used for training (bold curves) and, at 
the same time, the prediction capabilities of the yi values 
(fixed xi) for conditions not used during training (dashed 
lines). It can be observed that the tendency of VLE acetone-
ethanol mixture was properly estimated by the GNM in the 
range where the data set information was not included in the 
training process. Of course, the embedded ANN performs 
calculations of the binary interaction parameters which were 
fed to the PR-EOS and the different formulations previously 
described.  

Fig. 4 focuses on the predicted values representation and 
compares specific experimental data (van Winkle, 1956) with 
those estimated by the presented methodology. The lines are 
used as references and do not represent experimental values. 
As observed in the figure, there is a tendency to obtain higher 
deviations of the gas phase representation (yi) as the 
concentration is closer to the equimolar mixture range (i.e. at 
the higher contribution of the aij parameter). Even though the 
error is considerable under these conditions, the error was 
lower than 10% and on average, the deviation was lower than 
5%.   

 Collection of Experimental VLE Data and 
management, such as standardization, as 

needed (not performed in this work) 
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Phenomenological Equations 
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Modification of Neural Network 
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Figure 3. VLE Equilibrium; Training data (Bold Curve) and estimated data 
(dashed line).  
Source: The Authors 

 

 
Figure 4. Differences between predicted values and experimental values. 
Source: The Authors  

 

 
Figure 5. Binary interaction parameters predicted by GNM in the Acetone 
(1)-Ethanol (2) mixtures (x1=0.316, y1=0.534, T=338.75; x1=0.414, 
y1=0,614, T=336.55; x1=0.532, y1=0.697, T=334.45; x1=0.691, y1=0.796, 
T=332.15; x1=0.852, y1=0.896, T=330.45; x1=y1=1, T=329.25). 
Source: The authors. 

One of the main objectives of the present work was to 
predict, from pure component data, binary interaction 
parameters. Fig. 5 shows the obtained kij parameters as a 
function of temperature, where the line is added to describe 
the effect of temperature on the BIP (slope of 0.0018). As 
observed in the figure, the binary interaction parameter 
(which ranges between -0.004 to 0.013) describes a linear 
functionality with temperature. The values describe a 
relatively similar interaction between even molecules and 
uneven molecules (i.e. relatively low kij).  

The prediction capabilities were analyzed by the Index of 
Agreement (IA; [24]); see Equation 7. In Equation 7 Oi and 
Pi are the observed and predicted output values; n is the total 
number of data; and pi’=pi - om and oi’=oi - om are the 
differences between the mean value of the observations (om) 
and the predicted and observed output values, respectively.  

 
 IA = 1 − ∑ (𝑃𝑃𝑖𝑖−𝑂𝑂𝑖𝑖)2

𝑛𝑛
𝑖𝑖=1

∑ (|𝑃𝑃𝑖𝑖´|+|𝑂𝑂𝑖𝑖´|)2
𝑛𝑛
𝑖𝑖=1

   (7) 
 
Once the previous equation was applied to the predicted 

values of known mixtures (Acetone-Ethanol; Dashed Line of 
Fig. 4) the Index of Agreement found was equal to 0.988, 
which implies a considerable agreement (higher than 95% of 
accuracy) for the total estimations performed for the system 
under consideration.  

The prediction capability of the system was further 
analyzed by evaluating a mixture of components not used in 
the training data. The mixture Methanol (1) – Ethanol (2) at 
101.33 kPa, 348.15 K, x1=0.242 and y1=0.326 [16], was 
compared with the predicted values. As evaluated, an error of 
approximately 18% was obtained with a predicted kij value of 
-0.016. This number indicates that there is a lack of the GNM 
representing capability. Of course, there is no alcohol-alcohol 
pair used in the training set; therefore a reduction in the 
prediction capability was expected. 

Once comparing the GNM results with other works that 
have used ANN for predicting VLE, a relatively similar 
performance of the present GNM was observed. Si-Maussa 
et al. [23] focused in the VLE prediction of carbon dioxide–
esters mixtures and reported Absolute Relative Deviations in 
the order of 4.95% and 0.19% for pressure and mole fraction 
estimations, respectively. Similarly, Karimi and Yousefi [25] 
studied a VLE of four binary refrigerant systems. In their 
work, medium average errors as high as 5.15% were 
observed for mole fraction estimations. In both of the 
previously mentioned manuscripts, comparisons with EOS 
were performed. In both works it was observed that the ANN 
performed better than the EOS. In the present manuscript this 
comparison cannot be performed since the prediction is 
embedded in the EOS and therefore the errors that the EOS 
models have intrinsic in their representations are passed to 
the GNM results. Furthermore, in both mentioned works the 
focuses have been interpolating data. In the present 
manuscript extrapolations at other ranges of the system 
conditions and mixtures were performed. Is in these points 
that present work makes an important difference since, by 
predicting binary interaction parameters instead of VLE data 
the network could be used (if considerable input data is used 
during training) to not only interpolate within input data 
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mixtures, it could be used to  predict non input mixtures 
behaviors. 

 
7.  Conclusion 

 
A methodology to estimate binary interaction parameters 

was implemented in this work. A GNM was used, in which 
the PR-EOS was formulated in a neural-network-like 
architecture in order to limit and improve the prediction 
capabilities of an embedded ANN. The embedded ANN 
focuses on estimate binary interaction parameters useful in 
the representation of VLE. As observed in the results, the 
generated GNM successfully represented the VLE of 
mixtures used in the GNM training (deviations on average 
were lower than 5%) and was able to estimate the 
temperature dependence of the binary interaction parameters.  

Further evaluation of the GNM, with mixtures not used 
during training, showed a lower VLE prediction (i.e. kij). This 
lower prediction capability (deviations in the order of 20%) 
was explained by a lack of representability of the system 
(non-alcohol-alcohol pair used during training) and the need 
to define the most suitable parameters that should be used as 
input in the embedded ANN in order to improve the 
prediction capabilities of the GNM. 

Additionally, an innovative methodology to incorporate 
non-linear evaluations in a neural-network-like architecture 
was developed. As far as the authors are aware, additive and 
multiplicative evaluations have mainly been used as 
transfer/input functions. The possibility of incorporating 
polynomial expressions and other mathematical expressions 
could improve and extend the use of GNM in more complex 
phenomenological/empirical representations.  

In terms of the Peng-Robinson EOS, the present 
methodology will be limited by the same restrictions as the 
Peng-Robinson possesses. Nevertheless, a gamut of possible 
modifications can be foreseen that could improve the 
applicability of the presented work. For example, the 
methodology could be extended by using considerable data 
sets during the training; using an increased number of 
parameters as feed to the embedded ANN in order to improve 
the prediction of BIPs; incorporating group contribution 
methods in the estimation; considering activity coefficients 
for the liquid representations; using other EOS; using Gibbs 
Excess Free Energy representations in neural network-like 
architecture; and/or incorporating long- and medium-range 
interactions (ionic in nature), among others. In summary, a 
powerful and simple tool for the estimation of state variables 
and VLE information was developed. The authors hope that 
this developed tool generates a significant impact on 
decision-making and is well received by industry and 
academia. 
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