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Succinct representations of trees are an elegant solution to make large trees fit in main 
memory while still supporting navigational operations in constant time. However, their 
construction time remains a bottleneck. We introduce two parallel algorithms that improve 
the state of the art in succinct tree construction. Our results are presented in terms of 
work, the time needed to execute a parallel computation using one thread, and span, 
the minimum amount of time needed to execute a parallel computation, for any amount 
of threads. Given a tree on n nodes stored as a sequence of balanced parentheses, our 
first algorithm builds a succinct tree representation with O (n) work, O (lgn) span and 
supports a rich set of operations in O (lgn) time. Our second algorithm improves the 
query support. It constructs a succinct representation that supports queries in O (c) time, 
taking O (n + n

lgc n
lg( n

lgc n
) + cc) work and O (c + lg( ncc

lgc n
)) span, for any positive constant c. 

Both algorithms use O (n lgn) bits of working space. In experiments using up to 64 cores 
on inputs of different sizes, our first algorithm achieved good parallel speed-up. We also 
present an algorithm that takes O (n) work and O (lg n) span to construct the balanced 
parenthesis sequence of the input tree required by our succinct tree construction algorithm.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Trees are ubiquitous in Computer Science. They have applications in every aspect of computing from XML/HTML pro-
cessing to abstract syntax trees (AST) in compilers, phylogenetic trees in computational genomics or shortest path trees 
in path planning. The ever increasing amounts of structured, hierarchical data processed in many applications have turned 
the processing of the corresponding large tree structures into a bottleneck, particularly when they do not fit in memory. 
Succinct tree representations store trees using as few bits as possible and thereby significantly increase the size of trees 
that fit in memory while still supporting important primitive operations in constant time. There exist such representations 
that use only 2n + o(n) bits to store the topology of a tree with n nodes [2–8], which is close to the information-theoretic 
lower bound and much less than the space used by traditional pointer-based representations.
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Alas, the construction of succinct trees is quite slow compared to the construction of pointer-based representations. 
Multicore parallelism offers one possible tool to speed up the construction of succinct trees, but little work has been done 
in this direction so far. The only results we are aware of focus on the construction of wavelet trees, which are used in 
representations of text indexes. In [9], two practical multicore algorithms for wavelet tree construction were introduced. 
Both algorithms perform O (n lgσ)1 work and have O (lg n) span, where n is the input size, σ is the alphabet size, work is 
the time needed to execute a parallel computation using a single thread, and span is the minimum time needed to execute 
a parallel computation for any number of threads. In [10–12], Shun introduced new algorithms to construct wavelet trees 
in parallel. Among these algorithms, the best algorithm in practice performs O (n lg σ) work and has O (lg n lgσ) span. Shun 
also explained how to parallelize the construction of rank/select structures so that it requires O (n) work and O (lg n) span 
for rank structures, and O (n) work and O (lg n) span for select structures.

In this paper, we provide a parallel algorithm that constructs the RMMT tree representation of [2] in O (n) work and 
O (lg n) span. This structure is a simplified version of the succinct tree representation in [2], and it uses 2n + o(n) bits to 
store an ordinal tree on n nodes and supports a rich set of basic operations on these trees in O (lg n) time. While this query 
time is theoretically suboptimal, the RMMT structure is simple enough to be practical and has been verified experimentally 
to be very small and support fast queries in practice [13]. Combined with the fast parallel construction algorithm presented 
in this paper, it provides an excellent tool for manipulating very large trees in many applications.

We implemented and tested our algorithm on a number of real-world input trees having billions of nodes. Our exper-
iments show that our algorithm run on a single core is competitive with state-of-the-art sequential constructions of the
RMMT structure and achieves good speed-up on up to 64 cores and likely beyond.

We then designed a parallel algorithm to construct the more complex, optimal succinct tree representation that supports 
operations in O (c) time using 2n + O (n/ lgc n) bits, for any constant c > 0. This algorithm has O (n + n

lgc n
lg( n

lgc n
) + cc) work 

and O (c + lg( ncc

lgc n
)) span. In the design of this new algorithm, we provide parallel algorithms to construct the 2d-Min-Heap 

data structure and the ladder decomposition of trees. We think that those partial results may be of independent interest. 
For example, the ladder decomposition is used to support level ancestor in O (1) time [14].

The remainder of this paper is organized as follows: Section 2 gives a brief overview of the RMMT structure, to clearly 
define its structure and illustrate how it can be used to support basic operations on trees efficiently. It also briefly dis-
cusses other previous work on succinct tree representations and reviews the dynamic multithreading model, which we use 
to analyze the theoretical running time of our algorithm. Section 3 describes our parallel algorithms for constructing suc-
cinct representations of trees and for computing the balanced parentheses representation of trees. Section 4 discusses our 
experimental setup and results. Section 5 offers concluding remarks and discusses future work.

2. Preliminaries

2.1. Succinct trees

Jacobson [3] was the first to propose the design of succinct data structures. He showed how to represent an ordinal tree 
on n nodes using 2n + o(n) bits so that computing the first child, next sibling or parent of any node takes O (lg n) time in 
the bit probe model. Clark and Munro [4] showed how to support the same operations in constant time in the word RAM 
model with word size �(lg n). Since then, much work has been done on succinct tree representations, to support more 
operations, to achieve compression, to provide support for updates, and so on [15–19,5,6,2]. See [7] for a thorough survey.

Navarro and Sadakane [2] proposed a succinct tree representation, referred to as NS-representation throughout this paper, 
which was the first to achieve a redundancy of O (n/ lgc n) bits for any positive constant c. The redundancy of a data structure 
is the additional space it uses above the information-theoretic lower bound. While all previous tree representations achieved 
a redundancy of o(n) bits, their redundancy was �(n lg lg n/ lg n) bits, that is, just slightly sub-linear. The NS-representation 
also supports a large number of navigational operations in constant time (see Table 1); only the work in [5,6] supports 
two additional operations: level_leftmost, which finds the leftmost node at a given level, and level_successor(x), 
which finds the node immediately to the right of node x at the same level. An experimental study of succinct trees [13]
showed that a simplified version of the NS-representation uses less space than other existing representations in most cases 
and performs most operations faster. In this paper, we provide a parallel algorithm for constructing this representation.

2.1.1. Simplified NS-representation
The NS-representation is based on the balanced parenthesis sequence P of the input tree T , which is obtained by 

performing a preorder traversal of T and writing down an opening parenthesis when visiting a node for the first time and 
a closing parenthesis after visiting all its descendants. Thus, the length of P is 2n. See Fig. 1 as an example.

The NS-representation is not the first structure to use balanced parentheses to represent trees. Munro and Raman [15]
used succinct representations of balanced parentheses to represent ordinal trees and reduced a set of navigational operations 
on trees to operations on their balanced parenthesis sequences. Their solution supports only a subset of the operations 

1 We use lg x to mean log2 x throughout this paper.
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Table 1
Operations supported by the NS-representation [2], including operations over the corresponding balanced parenthesis sequence.

No. Operation Description

1 child(x, i) Find the ith child of node x
2 child_rank(x) Report the number of left siblings of node x
3 degree(x) Report the degree of node x
4 depth(x) Report the depth of node x
5 level_anc(x, i) Find the ancestor of node x that is i levels above node x
6 subtree_size(x) Report the number of nodes in the subtree rooted at node x
7 height(x) Report the height of the subtree rooted at x
8 deepest_node(x) Find the deepest node in the subtree rooted at node x
9 LCA(x, y) Find the lowest common ancestor of nodes x and y

10 lmost_leaf(x) /rmost_leaf(x) Find the leftmost/rightmost leaf of the subtree rooted at node x
11 leaf_rank(x) Report the number of leaves before node x in preorder
12 leaf_select(i) Find the ith leaf from left to right
13 pre_rank(x)/post_select(x) Report the number of nodes preceding node x in preorder/postorder
14 pre_select/post_select(i) Find the ith node in preorder/postorder
15 level_lmost(i)/level_rmost(i) Find the leftmost/rightmost node among all nodes at depth i
16 level_succ(x)/level_pred(x) Find the node immediately to the left/right of node x among all nodes at depth i

17 access(i) Report P [i]
18 find_open(i)/find_close(i) Find The matching parenthesis of P [i]
19 enclose(i) Find the closest enclosing matching parenthesis pair for P [i]
20 rank_open(i)/rank_close(i) Report the number of opening/closing parentheses in P [1..i]
21 select_open(i)/select_close(i) Find the ith opening/closing parenthesis

Fig. 1. Balanced parentheses representation P of a tree T . This representation, also known as folklore encoding, can be stored using a bit vector, writing a 
1 for each opening parenthesis and a 0 for each closing parenthesis.

supported by the NS-representation. Additional operations can be supported using auxiliary data structures [19–22], but 
supporting all operations in Table 1 requires many auxiliary structures, which increases the size of the final data structure 
and makes it complex in both theory and practice. The main novelty of the NS-representation lies in its reduction of a large 
set of operations on trees and balanced parenthesis sequences to a small set of primitive operations. Representing P as a bit 
vector storing a 1 for each opening parenthesis and a 0 for each closing parenthesis (see Fig. 1), the following primitive 
operations can be defined, where g is an arbitrary function on {0, 1}:

sum(P , g, i, j) = ∑ j
k=i g(P [k])

fwd_search(P , g, i,d) = min{ j | j ≥ i,sum(P , g, i, j) = d}
bwd_search(P , g, i,d) = max{ j | j ≤ i,sum(P , g, j, i) = d}

rmq(P , g, i, j) = min{sum(P , g, i,k) | i ≤ k ≤ j}
RMQ(P , g, i, j) = max{sum(P , g, i,k) | i ≤ k ≤ j}

rmqi(P , g, i, j) = argmin
k∈[i, j]

{sum(P , g, i,k)}

RMQi(P , g, i, j) = argmax
k∈[i, j]

{sum(P , g, i,k)}

Most operations supported by the NS-representation reduce to these primitives by choosing g to be one of the following 
three functions:

π : 1 �→ 1 φ : 1 �→ 1 ψ : 1 �→ 0

0 �→ −1 0 �→ 0 0 �→ 1
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Fig. 2. Range min–max tree of the balanced parentheses sequence of the Fig. 1, with s = 7. In the figure, the m′ and M ′ values involved in the operation 
fwd_search(P , π, 5, 0) = 20 are underlined.

For example, assuming the ith parenthesis in P is an opening parenthesis, the matching closing parenthesis can be found 
using fwd_search(P , π, i, 0). Thus, it (almost)2 suffices to support the primitive operations above for g ∈ {π, φ, ψ}. To do 
so, Navarro and Sadakane designed a simple data structure called Range Min–Max Tree (RMMT), which supports the primitive 
operations above in logarithmic time when used to represent the entire sequence P . To achieve constant-time operations, 
P is partitioned into chunks. Each chunk is represented using an RMMT, which supports primitive operations inside the 
chunk in constant time if the chunk is small enough. Additional data structures are used to support operations on the entire 
sequence P in constant time.

Next we briefly review the RMMT structure and how it supports the primitive operations for g = π (see Fig. 1 for an 
example of function π ). Navarro and Sadakane [2] discussed how to make it support these operations also for φ and ψ
while increasing its size by only O (n/ lgc n). To define the variant of the RMMT we implemented, we partition P into chunks 
of size s = w lg n, where w is the machine word size. For simplicity, we assume that the length of P is a multiple of s. The
RMMT is a complete binary tree over the sequence of chunks (see Fig. 2). (If the number of chunks is not a power of 2, we 
pad the sequence with chunks of zeroes to reach the closest power of 2. These chunks are not stored explicitly.) Each node 
u of the RMMT represents a subsequence Pu of P that is the concatenation of the chunks corresponding to the descendant 
leaves of u. Since the RMMT is a complete tree, we need not store its structure explicitly. Instead, we index its nodes as 
in a binary heap and refer to each node by its index. The representation of the RMMT consists of four arrays e′ , m′ , M ′ , 
and n′ , each of length equal to the number of nodes in the RMMT. The uth entry of each of these arrays stores some crucial 
information about Pu : Let the excess at position i of P be defined as sum(P , π, 0, i) = ∑i

k=0 π(P [k]). e′[u] stores the excess 
at the last position in Pu . m′[u] and M ′[u] store the minimum and maximum excess, respectively, at any position in Pu . 
n′[u] stores the number of positions in Pu that have the minimum excess value m′[u].

Combined with a standard technique called table lookup, an RMMT supports the primitive operations for π in O (lg n)

time. Consider fwd_search(P , π, i, d) for example. We first check the chunk j = 	i/s
 containing P [i] to see if the answer 
is inside this chunk. This takes O (lg n) time by dividing the chunk into portions of length w/2 and testing for each portion 
in turn whether it contains the answer. Using a lookup table whose content does not depend on P , the test for each portion 
of length w/2 takes constant time: For each possible bit vector of length w/2 and each of the w/2 positions in it, the table 
stores the answer of fwd_search(P , π, i, d) if it can be found inside this bit vector, or −1 otherwise. As there are 2w/2

bit vectors of length w/2, this table uses 2w/2poly(w) bits. If we find the answer inside the chunk j containing P [i], we 
report it. Otherwise, we compute the global target d′ = e′[ j] −sum(P , π, i, ( j + 1)s − 1) + d. Let u be the leaf corresponding 
to this chunk. If u has a right sibling, we inspect the sibling’s m′ and M ′ values to determine whether it contains d′ . If 
so, let v be this right sibling. Otherwise, we move up the tree from u until we find a right sibling v of an ancestor of u
whose corresponding subsequence P v contains the query answer. Then we use a similar procedure to descend down the 
tree starting from v to look for the leaf descendant of v containing the answer and spend another O (lg n) time to determine 
the position of d′ inside its chunk. Since we spend O (lg n) time for each of the two leaves we inspect and the tests for any 
other node in the tree take constant time, the cost is O (lg n).

Fig. 2 shows the m′ and M ′ values involved in the answer of fwd_search(P , π, 5, 0) (the matching closing parenthesis 
of the opening parenthesis at position 5). In this particular example, the objective is to find the closest position after i = 5
with excess value d = 0. Using lookup tables, we check if the answer is in the range [5, 6] of the chunk 	5/7
 = 0. Since 
the answer is not there, we analyze the right sibling of the chunk 0 and compute the new global target d′ = 3 − 2 + 0 = 1. 
The m′ and M ′ values of the right sibling are 2 and 4, so d′ is not there. We now move to the parent of the parent of the 
chunk 0. Let’s call v to such node. The m′ and M ′ values of v are 0 and 5, and therefore, the answer exists and it is in the 
right child of v . Then, we check the m′ and M ′ values of the child of v . Those values are 1 and 5, and therefore, we need 
to move to the left child of the right child of v . Since the current node is a leaf, we use lookup tables to find the first value 
1 is that chunk. In this case, such a 1 value is at position 20.

Supporting operations on the leaves, such as finding the ith leaf from the left, reduces to rank and select operations 
over a bit vector P1[0..2n − 1] where P1[i] = 1 iff P [i] = 1 and P [i + 1] = 0. The rankc(P1, i) operation counts the times 

2 A few navigational operations cannot be expressed using these primitives. The NS-representation includes additional structures to support these oper-
ations.
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Fig. 3. Example of the sequence (1, 4, 9, 5, 10, 7, 3, 2, 5, 4) and its ladders decomposition. In the 2d-Min-Heap, the indices of the sequence are inside large 
nodes, values are inside small circles and the weights of the edges are next to the edges.

symbol c appears up to position i in P1. In turn, operation selectc(P1, j) returns the position in P1 of the j-th appearance 
of symbol c, for c ∈ {0, 1}. rank and select operations over P1 in turn reduce to sum and fwd_search operations over 
P1 and can thus be supported by an RMMT for P1. P1 does not need to be stored explicitly because any consecutive O (w)

bits of P1 can be computed from the corresponding bits of P using table lookup.

2.1.2. Constant time queries
To support constant time queries on arbitrary-sized trees, the balanced parentheses representation P needs to be par-

titioned into blocks. We represent each block using a RMMT and then construct additional data structures considering the 
minimum, maximum and excess values of the RMMT of each block. The size of each block is wc , so we have τ = �2n/wc� of 
such blocks. To support constant time queries inside each block, we construct a RMMT, similar as before, but with chunk size 
s = w/2 and arity k = �(w/c lg w), instead of arity 2. Let m1, . . . , mτ , M1, . . . , Mτ , n1, . . . , nτ and e1, . . . , eτ be the minima, 
maxima, number of minima and excess stored at the root of the τ RMMTs. Depending on the operations, the additional data 
structures differ.

To solve fwd_search(P , π, i, d), we first try to solve it inside block j = 	i/wc
. The answer is returned if it is found 
in that block. If it is not, we must find the first excess d′ = d + e j−1 + sum(P , π, 0, i − 1 − wc · ( j − 1)) in the RMMTs of 
the following blocks. Applying Lemma 4.4 of [2], we must either find the first block r > j such that mr ≤ d′ , or such that 
Mr ≥ d′ . Once we find such a block, we complete the query inside of it with a local fwd_search(P , π, 0, d′ − er−1).

To find the corresponding block r in constant time, the authors propose additional data structures to represent the left-
to-right minima and maxima values. For the case of left-to-right minima, it is necessary to build a tree called 2d-Min-Heap
(the left-to-right maxima is similar):

Definition 1. [2] Let m1, . . . , mτ be a sequence of integers. We define for each 1 ≤ j ≤ τ the left-to-right minima starting at 
j as lrm( j) = ( j0, j1, . . .) where j0 = j, jr < jr+1, m jr+1 < m jr , and m jr+1, . . . , m jr+1−1 ≥ m jr .

Once two lrm sequences coincide, they do so until the end. Thus, a 2d-Min-Heap is defined as a trie of τ nodes, com-
posed of the reversed lrm sequences. Since the resulting trie can be composed of disconnected paths, a dummy root is 
used to generate the tree. If we assign weight to the edges, where the weight of an upward edge ( ji, ji+1) is defined as 
m ji − m ji+1 , we can reduce the problem of finding the first block r > j such that mr ≤ d′ to a weighted level ancestor query 
over the 2d-Min-Heap. More precisely, we need to find the first ancestor jr of node j such that the sum of the weights 
between j and jr is greater than or equal to d′′ = m j − d′ . Fig. 3a shows an example of the 2d-Min-Heap for the sequence 
(1, 4, 9, 5, 10, 7, 3, 2, 5, 4).

To answer the weighted level ancestor query, we need to decompose the 2d-Min-Heap. The 2d-Min-Heap is decomposed 
into paths by recursively extracting the longest path. Then, for each path of length l, we store an extension of it by adding 
at most l nodes towards the root. These extended paths are called ladders. Fig. 3b shows an example of ladders. This 
decomposition ensures that a node with height h will have its first h ancestors in its ladder. For each ladder, a sparse 
bitmap is stored, where the i-th 1 of the bitmap represents the i-th node upward in the ladder, and the distance between 
two 1’s is equal to the weight of the edge between them. All the bitmaps are concatenated into one of size O (n), which 
is represented by the sparse bitmap of Pǎtraşcu [23]. Additionally, for each node v of the 2d-Min-Heap, the at most lg τ
ancestors at depths depth(v) − 2i , i ≥ 0 are stored in an array. Similarly, for each node v , the lgτ accumulated weights 
toward the ancestors at distance 2i are stored using fusion trees [24]. Fusion trees are used to store z keys of l bits each 
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one in O (zl) bits, supporting predecessor queries in O (lgl z) time, by using a l1/6-ary tree. The 1/6 factor can be reduced to 
achieve O (1/ε) predecessor query, where 0 < ε ≤ 1/2 [2].

Observe that there is no guarantee that the weighted level ancestor jr of the node j is in the ladder of j. Therefore, 
to answer the weighted level ancestor query we need first to compute the ancestor j′ of node j with accumulated weight 
2	lg d′′
 . The ancestor j′ can be founded in constant time by a predecessor query of fusion tree of the node j and the array 
with the lgτ ancestors of the node j. The answer is in the ladder of j′ . If j′ is at distance 2i , then the answer is at distance 
less than 2i+1. Applying rank/select queries over the bitmap of the ladder of node j′ , we find the node jr .

To solve rmqi(P , g, i, j) and RMQi(P , g, i, j) operations on the τ blocks, we just need to build a data structure that 
supports range minimum and maximum queries in constant time, such as [25,26]. Both [25,26] use 2n + o(n) bits of extra 
space.

To solve degree(i) operations, we need to consider pioneers. Let pioneers be the tightest matching pair of parentheses 
(i, j), with j = find_close(i), such that i and j belong to different blocks. We define a marked block to be a block that has 
the opening parenthesis of a pioneer (i, j) such that i and j do not belong to consecutive blocks. Let a be a marked block 
with pioneer (i, j) and let b be a block, we say that the block a contains the block b if the block b is between the blocks 
where i and j belong. We also say that b is a’s child. There are O (τ ) of such marked blocks. The degree(i) operation, 
which computes the number of children of a node i, can be solved as follows: If the operation can be solved in at most two 
consecutive blocks, then the answer can be computed in constant time consulting the at most two corresponding RMMTs. 
Otherwise, it corresponds to the degree of a node that defines a marked block. Since there are O (τ ) of such blocks, we can 
spend O (τ lgn) bits to store explicitly the degree of all the nodes that define marked blocks and answer the operation in 
constant time.

The marked blocks are also used to support child(i, q) and child_rank(i) operations. Both for child(i, q) and 
child_rank(i), if the block of i is not a marked block, then both can be solved in at most two in-block queries. For 
marked blocks, we store a bitmap to represent the information about the children of each of the nodes that define them. 
For each marked block j, we store, in left-to-right order, information of marked blocks and blocks fully contained in j. 
For each block j′ contained in block j, we store the number of children of the node associated to j that starts within j′
(the number of minima of block j′) and for each marked block contained in j, we store a 1, which represents a block 
containing one child of j. All numbers are stored in a bitmap as gaps of 0’s between consecutive 1’s. For the child(i, q)

query, we first check if child(i, q) lies in the block of i or in find_close(i). If it does, we solve it with an in-block 
query. If not, we compute p = rank1(Ci, select0(Ci, q)), where Ci is the bitmap associated to the block of i. The value 
p represents the position of the block or marked block contained in i, where the q-th child of i lies. If it is a marked 
block, then it is the answer. If it is a block j, then the answer corresponds to the q′-th minimum within that block, where 
q′ = q − rank0(Ci, select1(Ci, p)). child_rank(i) can be solved similarly. Since the number of 1’s on each bitmap is 
less than the number of 0’s, the bitmap can be stored using the sparse bitmap of [23].

The remaining operations require rank and select on P , or the virtual bit vectors P1 and P2. For rank, it is necessary 
to store the answers at the end of each block, finishing the query inside the corresponding block. For select1 (and 
select0), we build a sequence with the accumulated number of 1’s in each of the τ blocks of P . Such a sequence is 
stored in a bitmap, representing each number in unary as gaps of 0’s between consecutive 1’s using the results of [23].

2.1.3. Memory space
To analyze the space used for the simplified NS-representation, observe that storing P requires 2n bits, while the space 

needed to store the vectors e′ , m′ , M ′ , and n′ is 2(n/s) lg n = 2n/w . The space needed to store the same vectors for the
RMMT of P1 is the same. Since we can assume that w = �(lg n), the total size of the simplified RMMT is thus 2n + O (n/ lg n)

bits.
The NS-representation that supports constant time queries requires the construction of τ = �2n/wc� RMMTs over se-

quences of wc parentheses. Thus, the τ RMMTs require 2n + O (n/ lg n) bits. The additional data structures needed to support 
constant time queries add some extra space: To support fwd_search, the ladders use O (

n lg n
wc ) bits, the arrays of ancestors 

use O (
n lg2 n

wc ) bits, the sparse bitmap uses O (
n lg wc

wc + ntt

lgt n
+ n3/4) bits and the fusion trees use O (

n lg2 n
wc ) bits. Thus, the 

extra structures to support fwd_search use O (
n lg2 n

wc + ntt

lgt n
+ n3/4) bits, with t > 0. The rmqi and RMQi query structures 

add O (n/wc) extra bits. Since there are O (n/wc) marked blocks, the degree operation uses O (n lg n/wc) extra bits. The 
bitmaps of the remaining operations, such as child and child_rank, uses 2n

wc lg(wc) + O ( ntt

lgt n
+ n3/4) extra bits, sup-

porting rank/select operations in O (t) time, since they correspond to the sparse bitmap of [23]. Therefore, the total space 
used by the additional data structures is O (

n(c lg w+lg2 n)
wc + ntt

lgt n
+ n3/4 + √

2w) bits, where the term 
√

2w corresponds to 

the lookup tables. With w = �(lg n) and t = c, the extra space is O (
n(c lg lg n+lg2 n)+ncc

lgc n
+ n3/4 + √

n) bits. Combined with the 

2n + O (n/ lg n) bits of the RMMTs, the NS-representation requires 2n + O (n/ lg n + n(c lg lg n+lg2 n)

lgc n
) bits, with c > 0, supporting 

queries in O (c) time.
According to [2], the O (n/ lg n) space of the RMMTs can be reduced by using aB-trees [23]. Given an array A of size N , 

with N a power of B , an aB-tree is a complete tree of arity B , that stores B consecutive elements of A on its leaves. Besides, 
each node of the aB-tree stores a value ϕ ∈ �. For the leaves, ϕ must be a function of the elements of A that it stores; for 
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Input: A, v , s, e
1 c := 0
2 if e − s = 1 then
3 if A[s] = v then return 1
4 return 0
5 m := 	(s + e)/2

6 a := spawn pcount(A, v, s, m)
7 b := pcount(A, v, m + 1, e)
8 sync
9 return a + b

Algorithm 1: pcount(). Example of a parallel recursive algorithm using the spawn and sync keywords. In parallel, the 
algorithm counts the occurrences of the element v between the s-th and e-th elements of the subarray A.

Fig. 4. Example of a multithreaded computation on the Dynamic Multithreading Model. It corresponds to the Directed Acyclic Graph representation of the 
call pcount(A, v, 0, 6) of the Algorithm 1. Vertices represent strands and edges represent dependences.

internal nodes, ϕ must be a function of the ϕ-values of its children. An aB-tree can decode the B ϕ-values of the children 
of any internal node and the B values of A for the leaves in constant time, if they are packed in a machine word. An 
aB-tree can be stored in N + 2 + O (

√
2w) bits (See [23] for the details). Thus, with A = P , B = k = s = O ( w

c lg w ), ϕ-values 
encoding e′, m′, M ′, n′ values and blocks of size N = Bc , it is possible to store each RMMT in N + 2 + O (

√
2w) bits. The sum 

of all the RMMTs is 2n + O ( n
Bc + √

2w) = 2n + O (
n(c lg lg n)c

lgc n
+ √

2w). Finally, using aB-trees to store the RMMTs, the space 

usage of the NS-representation is reduced to 2n + O (
n(c lg lg n+lg2 n)

lgc n
+ √

2w) bits.

2.2. Dynamic multithreading (DyM) model

In the DyM model [27, Chapter 27], a multithreaded computation is modelled as a directed acyclic graph G = (V , E)

whose vertices are instructions and where (u, v) ∈ E if u must be executed before v . The time T p needed to execute 
the computation on p cores depends on two parameters of the computation: its work T1 and its span T∞ . The work is the 
running time on a single core, that is, the number of nodes (i.e., instructions) in G , assuming each instruction takes constant 
time. Since p cores can execute only p instructions at a time, we have T p = �(T1/p). The span is the length of the longest 
path in G . Since the instructions on this path need to be executed in order, we also have T p = �(T∞). Together, these two 
lower bounds give T p = �(T∞ + T1/p). Work-stealing schedulers match the optimal bound to within a factor of 2 [28]. The 
degree to which an algorithm can take advantage of the presence of p > 1 cores is captured by its speed-up T1/T p and its 
parallelism T1/T∞ . In the absence of cache effects, the best possible speed-up is p, known as linear speed-up. Parallelism 
provides an upper bound on the achievable speed-up.

To describe parallel algorithms in the DyM model, we augment sequential pseudocode with three keywords. The spawn
keyword, followed by a procedure call, indicates that the procedure should run in its own thread and may thus be executed 
in parallel to the thread that spawned it. The sync keyword indicates that the current thread must wait for the termination 
of all threads it has spawned. It thus provides a simple barrier-style synchronization mechanism. Finally, parfor is “syntactic 
sugar” for spawning one thread per iteration in a for loop, thereby allowing these iterations to run in parallel, followed by a
sync operation that waits for all iterations to complete. In practice, the parfor keyword is implemented by halving the range 
of loop iterations, spawning one half and using the current procedure to process the other half recursively until reaching 
one iteration per range. After that, the iterations are executed in parallel. This implementation adds an overhead to the 
parallel algorithm bounded above by the logarithm of the number of loop iterations. When a procedure exits, it implicitly 
performs a sync to ensure all threads it spawned finish first. If a stream of instructions does not contain one of the above 
keywords, or a return (which implicitly sync’s) from a procedure, we group these instructions into a single strand.

For example, Algorithm 1 represents a parallel algorithm using spawn and sync, and Fig. 4 shows its multithreaded 
computation. In the figure, each circle represents one strand and each rounded rectangle represents strands that belong to 
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Input : An adjacency list representation of T consisting of arrays V and E and the number of threads, threads.
Output: The balanced parenthesis sequence P of T .

1 ET := an array of length 2|E|
2 P := an array of length 2|E| + 2
3 chk := |E|/threads
4 parfor t := 0 to threads − 1 do
5 for i := 0 to chk − 1 do
6 j := t ∗ chk + i
7 ET[2 ∗ j].value := 1 // forward edge, opening parenthesis
8 ET[2 ∗ j + 1].value := 0 // backward edge, closing parenthesis
9 if E[ j].child is a leaf then

10 ET[2 ∗ j].succ := 2 ∗ j + 1
11 else
12 ET[2 ∗ j].succ := 2 ∗ next(E[ j].child)

13 if E[ j] is the last edge in the adjacency list of E[ j].parent then
14 ET[2 ∗ j + 1].succ := 2 ∗ first(E[ j].parent) + 1
15 else
16 ET[2 ∗ j + 1].succ := 2 ∗ next(E[ j].parent)

17 parallel_list_ranking(ET)

18 parfor t := 0 to threads − 1 do
19 for i := 0 to 2 ∗ chk − 1 do
20 P [ET[2 ∗ t ∗ chk + i + 1].rank] := ET[2 ∗ t ∗ chk + i + 1].value

21 P [0] := 1
22 P [2|E| + 1] := 0

Algorithm 2: PFEA.

the same procedure call. Let A[s, e] be the subarray with elements A[s], A[[s + 1], . . . , A[e]. The algorithm starts on the 
initial procedure call with the subarray A[0, 6]. The first half of the subarray is spawned (black circle in the initial call) 
and the second half is processed by the same procedure (gray circle of the initial call). This divide-and-conquer strategy is 
repeated until reaching strands with one element of the array A (black circles on the bottom of the figure, where s is equal 
to e). Once a bottom strand is finished, it syncs to its calling procedure (white circles), until reaching the final strand (white 
circle of the initial call). Assuming that each strand takes unit time, the work is 25 time units and the span is 8 time units 
(this is represented in the figure by the nodes connected with shaded edges). For more examples of the usage of the DYM 
model, see [27, Chapter 27].

3. A parallel algorithm for succinct tree construction

In this section, we describe our new parallel algorithm for constructing the RMMT of a given tree, called the Parallel 
Succinct Tree Algorithm (PSTA). Its input is the balanced parenthesis sequence P of an n-node tree T . This is a tree repre-
sentation commonly used in practice, particularly in secondary storage. For trees whose folklore encoding is not directly 
available, in Section 3.1 we describe a parallel algorithm that can compute such an encoding in O (n/p + lg p) time. Our 
algorithms assume that manipulating w bits takes constant time. Additionally, we assume the (time and space) overhead of 
scheduling threads on cores is negligible. This is guaranteed by the results of [28], and the number of available processing 
units in current systems is generally much smaller than the input size n, so this cost is indeed negligible in practice.

3.1. Parallel folklore encoding algorithm

The PSTA algorithm requires the balanced parentheses representation P of the input tree T , but in some applications 
T may not be given in this form. Here, we present a parallel algorithm that constructs the balanced parenthesis sequence 
of T from a representation of T stored in adjacency list representation. Since the balanced parenthesis sequence of T is 
also known as its folklore encoding, we call the algorithm the Parallel Folklore Encoding Algorithm (PFEA). The input tree is 
represented by an array of nodes, V , and an array of edges, E . Each node v in V stores a pointer to an adjacency list 
with one entry per edge incident to v , sorted counterclockwise around v , starting with v ’s parent edge. Each entry in this 
adjacency list points to v and to the edge in E it represents. Each edge e = (u, v) in E points to its corresponding entries 
in the adjacency lists of u and v . Edges are assumed to be directed from parents to children. Thus, for an edge e = (u, v), 
we refer to u and v as e.parent and e.child, respectively. For x ∈ {u, v}, we use next(e.x) to denote the index in E of e’s 
successor element in x’s adjacency list, and first(v) to denote the index in E of the first element in v ’s adjacency list. Both 
are easily computed in constant time by following pointers.

The idea behind the construction is the following: Given an Euler tour of T that visits the children of each node in 
left-to-right order, the balanced parenthesis representation of T can be obtained by following the Euler tour, writing down 
an opening parenthesis for every edge traversed from parent to child and a closing parenthesis for every edge traversed 
from child to parent, and finally enclosing the resulting sequence in a pair of parentheses representing the root of T .

Algorithm 2 shows the pseudo-code of the construction. It creates two arrays, one an auxiliary array ET of length 2|E|
to store the Euler tour of T , the other an array P of size 2|E| + 2 to store the balanced parenthesis representation of T
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Input : P , s, threads.
Output: RMMT represented as arrays e′, m′, M ′, n′ and universal lookup tables.

1 o := �2n/s� − 1 // # internal nodes
2 e′ := array of size �2n/s�
3 m′, M ′, n′ := arrays of size �2n/s� + o
4 ct := �2n/s�/threads
5 parfor t := 0 to threads − 1 do
6 e′

t , m′
t , M ′

t , n′
t := 0

7 for chk := 0 to ct − 1 do
8 low := (t ∗ ct + chk) ∗ s
9 up := low + s

10 for par := low to up − 1 do
11 e′

t += 2 ∗ P [par] − 1
12 if e′

t < m′
t then

13 m′
t := e′

t ; n′
t := 1

14 else if e′
t = m′

t then
15 n′

t += 1
16 else if e′

t > M ′
t then

17 M ′
t := e′

t

18 e′[t ∗ ct + chk] := e′
t

19 m′[t ∗ ct + chk + o] := m′
t

20 M ′[t ∗ ct + chk + o] := M ′
t

21 n′[t ∗ ct + chk + o] := n′
t

22 parallel_prefix_sum(e′, ct)
23 parfor t := 1 to threads − 1 do
24 for chk := 0 to ct − 1 do
25 if chk < ct − 1 then
26 e′[t ∗ ct + chk] += e′[t ∗ ct − 1]
27 m′[t ∗ ct + chk + o] += e′[t ∗ ct − 1]
28 M ′[t ∗ ct + chk + o] += e′[t ∗ ct − 1]

Algorithm 3: PSTA (part I).

1 lvl := �lg threads�
2 parfor st := 0 to 2lvl − 1 do
3 for l := �lg(2n/s)� − 1 downto lvl do
4 for d := 0 to 2l−lvl − 1 do
5 i := d + 2l − 1 + st ∗ 2l−lvl

6 concat(i, m′, M ′, n′)

7 for l := lvl − 1 downto 0 do
8 parfor d := 0 to 2l − 1 do
9 i := d + 2l − 1

10 concat(i, m′, M ′, n′)

Algorithm 4: PSTA (part II).

(lines 1–2). Each entry in ET represents the traversal of an edge of T and stores three values: value is “(” or “)” depending 
on whether the edge is traversed from parent to child or from child to parent, that is, it’s the corresponding parenthesis to 
be added to P ; succ is the index in ET of the next edge in the Euler tour; and rank is the rank in the Euler tour. Lines 4–16 
of the algorithm populate ET with entries representing the Euler tour but leaving the rank values uninitialized. Line 17 
computes ranks using a parallel list ranking algorithm [29]. Given these ranks, the balanced parenthesis representation can 
be obtained by writing ET[i].value into P [ET[i].rank]. Lines 18–22 do exactly this.

3.2. Parallel succinct tree algorithm

Before describing the PSTA algorithm, we observe that the entries in e′ corresponding to internal nodes of the RMMT
need not be stored explicitly. This is because the entry of e′ corresponding to an internal node is equal to the entry that 
corresponds to the last leaf descendant of this node; since the RMMT is complete, we can easily locate this leaf in constant 
time. Thus, our algorithm treats e′ as an array of length �2n/s� with one entry per leaf. Our algorithm consists of three 
phases. In the first phase (Algorithm 3), it computes the leaves of the RMMT, i.e., the array e′ , as well as the entries of m′ , 
M ′ and n′ that correspond to leaves. In the second phase (Algorithm 4), the algorithm computes the entries of m′ , M ′ and n′
corresponding to internal nodes of the RMMT. In the third phase (Algorithm 5), it computes the universal lookup tables used 
to answer queries. The input to our algorithm consists of the balanced parenthesis sequence, P , the size of each chunk, s, 
and the number of available threads, threads.

To compute the entries of arrays e′ , m′ , M ′ , and n′ corresponding to the leaves of the RMMT (Algorithm 3), we first assign 
the same number of consecutive chunks, ct, to each thread (line 4). We call such a concatenation of chunks assigned to a 
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1 parfor x := −w to w − 1 do
2 parfor y := 0 to

√
2w − 1 do

3 i := ((x + w) << w) OR w
4 near_fwd_pos[i] := w
5 p, excess := 0
6 repeat
7 excess += 1 − 2 ∗ ((y AND(1 << p)) = 0)

8 if excess = x then
9 near_fwd_pos[i] := p

10 break

11 p += 1
12 until p ≥ w

Algorithm 5: PSTA (part III).

Input: i, m′ , M ′ , n′ .
1 m′[i] := min(m′[2i + 1], m′[2i + 2])
2 M ′[i] := max(M ′[2i + 1], M ′[2i + 2])
3 if m′[2i + 1] < m′[2i + 2] then
4 n′[i] := n′[2i + 1]
5 else if m′[2i + 1] > m′[2i + 2] then
6 n′[i] := n′[2i + 2]
7 else if m′[2i + 1] = m′[2i + 2] then
8 n′[i] := n′[2i + 1] + n′[2i + 2]

Function concat.

single thread a superchunk. For simplicity, we assume that the total number of chunks, �2n/s�, is divisible by threads. Each 
thread then computes the local excess value of the last position in each of its assigned chunks, as well as the minimum and 
maximum local excess in each chunk, and the number of times the minimum local excess occurs in each chunk (lines 8–17). 
These values are stored in the entries of e′ , m′ , M ′ , and n′ corresponding to this chunk (lines 18–21). The local excess value 
of a position i in P is defined to be sum(P , π, j, i), where j is the index of the first position of the superchunk containing 
position i. Note that the locations with minimum local excess in each chunk are the same as the positions with minimum 
global excess because the difference between local and global excess is exactly sum(P , π, 0, j − 1). Thus, the entries in n′
corresponding to leaves store their final values at the end of the loop in lines 5–21, while the corresponding entries of e′ , 
m′ , and M ′ store local excess values.

To convert the entries in e′ into global excess values, observe that the global excess at the end of each superchunk 
equals the sum of the local excess values at the ends of all superchunks up to and including this superchunk. Thus, we use 
a parallel prefix sum algorithm [29] in line 22 to compute the global excess values at the ends of all superchunks and store 
these values in the corresponding entries of e′ . The remaining local excess values in e′ , m′ , and M ′ can now be converted 
into global excess values by increasing each by the global excess at the end of the preceding superchunk. Lines 23–28 do 
exactly this.

The computation of entries of m′ , M ′ , and n′ (Algorithm 4) first chooses the level closest to the root that contains at 
least threads nodes and creates one thread for each such node v . The thread associated with node v calculates the m′ , M ′ , 
and n′ values of all nodes in the subtree rooted at v , by applying the function concat to the nodes in the subtree bottom 
up (lines 2–6). The invocation of this function for a node computes its m′ , M ′ , and n′ values from the corresponding values 
of its children. With a scheduler that balances the work, such as a work-stealing scheduler, cores have a similar workload. 
Lines 7–10 apply a similar bottom-up strategy for computing the m′ , M ′ , and n′ values of the nodes in the top lvl levels, 
but they do this by processing these levels sequentially and, for each level, processing the nodes on this level in parallel.

Algorithm 5 illustrates the construction of universal lookup tables using the construction of the table near_fwd_pos as an 
example. This table is used to support the fwd_search operation (see Section 2.1). Other lookup tables can be constructed 
analogously. As each entry in such a universal table can be computed independently, we can easily compute them in parallel.

3.3. Theoretical analysis

In the PFEA algorithm, lines 4–16 and 18–22 perform O (n) work and have T p = O (n/p + lg p) and span T∞ = O (lg n). 
The O (lg p) and O (lg n) terms in T p and in the span correspond to the implicit overhead of the parallel loop in line 4. The 
whole computation here (and in lines 18–22) could have been formulated as a single parallel loop. However, in the interest 
of limiting scheduling overhead, we create only as many parallel threads as necessary, similar to the PSTA algorithm in 
Section 3.2. Line 17 performs O (n) work and has T p = O (n/p + lg p) and span O (lg n). This gives a total work of T1 = O (n)

and a span of T∞ = O (lgn). The running time on p cores is T p = O (n/p + lg p).
The analysis of the PSTA algorithm is done in three steps: Lines 1–21 of Algorithm 3 require O (n) work, T p =

O (n/p + lg p) and span T∞ = O (lg n). Line 22 requires O (p) work, T p = O (lg p) and span T∞ = O (lg n), because we com-
pute a prefix sum over only p values. Lines 23–28 require O (n) work, T p = O (n/p + lg p) and span T∞ = O (lg n). Lines 1–6 
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of Algorithm 4 require O (n/s) work, T p = O (n/sp) and span T∞ = O (lg n/s). Lines 7–10 require O (p) work, T p = O (lg p)

and span T∞ = O (lg n/s). Building the top lvl levels of the RMMT can be reduced to the prefix sum problem, since min-
imum/maximum operations are associative. Algorithm 5 requires O (

√
2wpoly(w)) work, T p = O (

√
2wpoly(w)/p) and 

has span O (lg
√

2w + lgpoly(w)). As was defined in Section 2.1, w is the machine word size. Thus, the total work of
PSTA is T1 = O (n + lg p + √

2wpoly(w)) and its span is O (lg n). This gives a running time of T p = O (T1/p + T∞) =
O (n/p + lg p + √

2wpoly(w)/p) on p cores.3 The speedup is T1/T p = O  
(

p(n+√
2wpoly(w))

n+√
2wpoly(w)+p lg p

)
. Under the assumption that 

p � n, the speedup approaches O (p). Moreover, the parallelism T1/T∞ (the maximum theoretical speedup) of PSTA is 
n+√

2wpoly(w)
lg n .

The PSTA algorithm does not need any extra memory related to the use of threads. Indeed, it just needs space propor-
tional to the input size and the space needed to schedule the threads. A work-stealing scheduler, like the one used by the 
DyM model, exhibits at most a linear expansion space, that is, O (S1 p), where S1 is the minimum amount of space used 
by the scheduler for any execution of a multithreaded computation using one core. This upper bound is optimal within a 
constant factor [28]. In summary, the working space needed by our algorithm is O (n lg n + S1 p) bits. Since in our algorithm 
the scheduler does not need to consider the input size to schedule threads, S1 = O (1). Thus, since in modern machines it 
is usual that p � n, the scheduling space is negligible and the working space is dominated by O (n lg n).

Note that in succinct data structure design, it is common to adopt the assumption that w = �(lg n), and when construct-
ing lookup tables, consider all possible bit vectors of length (lg n)/2 (instead of w/2). This guarantees that the universal 
lookup tables occupy only o(n) bits. Adopting the same strategy, we can simplify our analysis and obtain T p = O (n/p + lg p).

Thus, we have the following theorem:

Theorem 1. The balanced parenthesis sequence representation of an ordinal tree on n nodes can be computed with O (n) work, O (lg n)

span and O (n lgn) bits of working space. Given a balanced parenthesis sequence of an ordinal tree on n nodes, a (2n + O (n/ lg n))-bit 
representation can be computed with O (n) work, O (lg n) span and O (n lg n) bits of working space. This compact representation 
supports the operations in Table 1 in O (lgn) time.

3.4. Parallel algorithm to support constant-time queries

In this section we show how to construct the 2d-Min-Heap and its ladders, the sparse bitmap of Pǎtraşcu, fusion trees and 
range-minimum-query structure in parallel, plus the computation of marked blocks. All of these structures are built over the 
minima, maxima, excess and the number of minima values of the τ = �2n/wc� RMMTs and are used to support different 
operations over trees in constant time (see Section 2.1.2).

2d-min-heap and ladders. Let S = (x0, x1, . . . , xn = −∞) be a sequence on n integers. Let the closest smaller successor of xi
be the element x j such that j = min{ j′| j′ > i ∧ x j′ < xi}. Thus, x j is the parent of xi in the 2d-Min-Heap. The 2d-Min-Heap 
is then fully determined once we find the closest smaller successor of all elements xi ∈ S .

Let C be the cartesian tree of S [30]. Let the closest right ancestor of xi in C be the closest ancestor x j of xi such that xi is 
in the left subtree of x j . Since xn = −∞, both the closest smaller successor and the closest right ancestor are well-defined 
for all xi , where 0 ≤ i ≤ n − 1. Observe that the closest smaller successor of xi and the closest right ancestor are the same 
element.

Let E T = (y0, y1, . . . , ym) be the Euler tour of C that visits the children of each node in right-to-left order. To ensure 
that each node in C has two children, we add (virtual) dummy nodes. We assume that every node xi in C , and hence in E T , 
is labelled with its index i in S . We also assume that for some xi in C , we know the first occurrence of xi in E T . Both these 
assumptions can be guaranteed as part of the construction of E T . The dummy nodes of C are not represented explicitly in 
E T . Thus, for instance, a node xi with two dummy nodes (a leaf of C ) is represented by three consecutive instances of i. We 
can obtain the closest right ancestor by performing a list ranking of E T , computing the sequence δ(E T ) = (z0, z1, . . . , zm)

defined as z0 = y0 and zi = δ(zi−1, yi), for all 1 ≤ i ≤ n, where δ(·, ·) is defined as

δ(x, yi) =
{

yi, if s(i) < i,where s(i) denotes the index of yi+1 element in E T
x, otherwise

See Fig. 5b as an example of the Euler Tour E T of the tree in Fig. 5a and its corresponding sequence δ(E T ).

Lemma 1. If yi is the first occurrence of some element x j in E T , then the element zi−1 in δ(E T ) is x j ’s closest right ancestor in C.

Proof. Since E T visits all the descendants of a node xk after the first occurrence of xk in E T , the first occurrence of x j
in E T comes after the first occurrence of xk if xk is x j ’s closest right ancestor. Now assume that yh is the last occurrence 
of xk before the first occurrence, yi , of x j . Let (yh, yh+1, . . . , yi) be the subsequence of E T between yh and yi , and let 

3 Notice that the term lgn of the span is implicit in the term n/p + lg p of T p . When p ≤ n/ lgn → n/p ≥ lgn. When p > n/ lgn → lg p = �(lg n).
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Fig. 5. Example of the proof of Lemma 1. The resulting 2d-Min-Heap corresponds to the tree in Fig. 3a.

(k = jh, jh+1, . . . , ji = j) be the sequence of indices of S such that yt = x jt , for all h ≤ t ≤ i, where x jt is the jt -th element 
in E T .

To prove the lemma, we need to show that jh+1 < jh and jt+1 > jt for all h < t < i because this implies that δ(x, yh) =
yh = xk and δ(x, yt) = x for all h < t < i, that is, zh = δ(zh−1, yh) = xk and δ(zt−1, yt) = zt−1 = zh = xk for all h < t ≤ i; in 
particular, zi−1 = xk , as claimed. The node yh+1 must be xk ’s left child in C because the last visit to xk by E T before visiting 
any node in xk ’s left subtree happens immediately before visiting xk ’s left child. Thus, jh+1 < jh . All the nodes on the path 
from yh+1 to x j in C are left ancestors of x j because xk is the closest right ancestor of x j . Thus, by the definition of E T , 
(yh+1, yh+2, . . . , yi) is the sequence of nodes in this path. Since yt+1 is the right child of yt for all h < t < i, we have that 
jt+1 > jt .

See Fig. 5 as an illustration of this proof. In the figure, let us take xk as the element with value 3 and index 7 and 
x j as the element with value 7 and index 6. In E T , the first occurrence of the element 7 is at position i = 14 and the 
last occurrence of 3 before position 14 is at position h = 11. Thus, for this example, (yh, yh+1, . . . , yi) = (3, 4, 5, 7) and 
( jh, jh+1, . . . , ji) = (7, 2, 4, 6). �

We can parallelize this strategy using the results of [31] to obtain the cartesian tree C of S with O (n) work, O (lg2 n)

span and O (n) working space, our PFEA algorithm in Section 3.1 to compute the Euler tour E T with O (n) work, O (lgn)

span and O (n lg n) working space, and the results of [29] to compute the list ranking using the function δ(·, ·) with O (n)

work, O (lgn) span and O (n) working space.
Next we compute δ(E T ) using list ranking (Lemma 1). Then, we assign one core to every element zi ∈ δ(E T ). The core 

writes zi as the closest right ancestor of x j if and only if yi is the first occurrence of x j in E T . This is done in O (1) time.
Thus, the complexity of constructing the 2d-Min-Heap in parallel is O (n) work, O (lg2 n) span and O (n lg n) working 

space.
After constructing the 2d-Min-Heap, the tree is decomposed into ladders. The ladders are constructed by recursively 

extracting the longest path of the tree. This gives us a set of paths. Then, each path of length l is extended by adding at 
most l nodes towards the root. These extended paths are called ladders. To construct the ladders in parallel, assume that 
we have a tree TB with a particular embedding B: for each node v of TB , the children of v are ordered by their height, 
with the highest child in the leftmost position.

Lemma 2. Given a tree TB with embedding B and n nodes, the ladders of TB can be constructed in parallel with O (n lgn) work, 
O (lg n) span and O (n lg n) working space.

Proof. To prove the lemma, we need to compute the depth of each node of the tree. This can be done in parallel by using 
the PFEA algorithm of Section 3.1, adding 1 for each forward edge and subtracting 1 for each backward edge. It takes 
O (n) work, O (lg n) span and O (n lg n) working space. Now, let E Tn = (v0, . . . , vm) be the Euler tour of TB that visits the 
children of each node in left-to-right order and writes the index of each node. Let E Td = (v ′ , . . . , v ′

m) be the Euler tour 
0
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Fig. 6. Computation of the ladders of a tree T B , with embedding B. The tree T B is the result of applying the embedding B to the tree of Fig. 3. In the 
tree, the depth of each node is shown. For example, d : 3 means that the depth of a node is 3. In the Euler Tour ETn , the dummy root is represented by 
the symbol r.

of TB that visits the children of each node in left-to-right order and writes the depth of each node. See Fig. 6 for an 
example. We can decompose the tree into paths by finding contiguous increasing subsequences in E Td . By the definition of 
the embedding B, the resulting paths are the same ones obtained by recursively extracting the longest path of the tree. For 
the path represented by the subsequence E Td[a..b], E Td[b] corresponds to the depth of the leaf of this path and the length 
of E Td[a..b] is b − a + 1.

To compute the ladders, we need to extend each subsequence in E Td . For a subsequence E Td[a..b], if E Tn[a] is the root of 
the tree, then the subsequence does not need to be extended. Otherwise, the subsequence is extended by adding up to x =
(b − a − 1) extra nodes. If x = 0, then the subsequence does not need to be extended. The extra nodes that we need to add 
correspond to ancestors of the leaf E Tn[b] at depths E Td[a] − i, i ∈ (1, . . . , x). We use the operation level_anc(E Tn[a], i), 
i ∈ (1, . . . , x), of the simplified NS-representation (see Table 1, operation 5) to obtain all the ancestors and the ladders.

The Euler Tours E Tn and E Td can be found using the PFEA algorithm. The bounds of all increasing subsequences can be 
found in parallel by finding each index i, such that E Td[i] < E Td[i − 1] or E Td[i] > E Td[i + 1]. This can be done with O (n)

work, O (1) span and O (n lg n) working space. The simplified NS-representation can be constructed with O (n) work, O (lgn)

span and O (n lg n) working space. The level_anc operation of the simplified NS-representation takes O (lg n) time to be 
answered (operation 5 in Table 1). Since the total length of all the ladders is 2n [2], the amount of operations that we need 
to perform is O (n). We can perform all the operations independently, so the O (n) level_anc operations can be answered 
in parallel with O (n lg n) work and O (lg n) span. �

Alternatively, observe that we can extend a subsequence E Td[a..b] using wavelet trees [32–34]. Since the extra nodes that 
we need to add correspond to the ancestors of the leaf E Tn[b], they appear before E Tn[b] in the Euler Tours, with depths 
E Td[a] − i, i ∈ (1, . . . , x). Given a node v at position j in E Td , we know that the parent of v is at position k in E Td , where 
k = max{k′|k′ < j, E Td[k′] = E Td[ j] − 1}. In general, to extend the subsequence E Td[a..b], we need the nodes at positions 
max{k′|k′ < a, E Td[k′] = E Td[a] − i}, with i ∈ (1, . . . , x). These positions can be found by using rank/select operations over 
E Td . To answer the rank/select operations efficiently, we could construct a wavelet tree over E Td , considering the contiguous 
alphabet 
 = {0, �lg |E Td|� − 1}. For example, to extend the subsequence E Td[a..b] with a node with depth d′ , we need to 
perform selectd′ (E Td, rankd′ (E Td, a)). Finally, once we find the position of all the nodes, we use E Tn to obtain their 
indexes. To construct the wavelet trees in parallel, we can use Algorithm PWT or algorithm DD of [1]. With Algorithm PWT, 
the wavelet tree can be computed with O (n lg n) work, O (n) span and O (n lg n) working space; with Algorithm DD, the 
wavelet tree can be computed with O (n lg n) work, O (lg n) span and O (n2 lg n) working space. If there are p < lg n available 
threads, the working space of Algorithm DD is reduced to O (n lg2 n). The rank/select operations over the wavelet tree take 
O (lg n) time. We can perform all the operations independently, so the O (n) rank/select operations can be answered in 
parallel in O (n lg n) work and O (lg n) span.

The following lemma presents an extension of the Lemma 2 for trees with arbitrary embeddings.

Lemma 3. Given a tree TA with an arbitrary embedding A and n nodes, the ladders of TA can be constructed in parallel with O (n lgn)

work, O (lgn) span and O (n lgn) working space.

Proof. To prove this lemma, we need to map the embedding A of TA to B. To compute the embedding B, we need to 
order all the children of the nodes of TA by height with the highest in the leftmost position. To do this, we use the PFEA
algorithm to compute the folklore encoding of T and then construct its simplified NS-representation to use the height
operation to obtain the height of all the nodes. Both the folklore encoding and the simplified NS-representation can be 
computed with O (n) work, O (lg n) span and O (n lg n) working space. The height operation takes O (lg n) and there are 
n operations, and therefore all the operations can be done with O (n lg n) work and O (lg n) span. After that, we can use a 
parallel stable sorting algorithm over the children of the nodes of TA . Raman [35] sorts an array of n integers each in the 
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domain [1, . . . , m], for m = nO (1) , with O (n lg lg m) work, O (lgn/ lg lg n + lg lg m) span and O (n lg m) working space. In our 
case, the total number of children in T is n − 1 or 2(n − 1) by using bidirectional edges, and the height of any node is less 
than n. Therefore, we can sort the children of all the nodes of T with O (n lg lg n) work, O (lg n/ lg lg n) span and O (n lg n)

space.
With the new embedding B, we use Lemma 2 to finish the proof.
In the NS-representation, the 2d-Min-Heap has τ nodes, and therefore, the 2d-Min-Heap and its ladders can be computed 

with O (τ lgτ ) work, O (lg2 τ ) span and O (τ lgτ ) working space. �
Considering the results of Bender and Farach-Colton to solve the level ancestor problem [14], we can use Lemma 3 to 

parallelize their solution. Their solution is based on the computation of ladders, pointers to ancestors and lookup tables of 
a rooted tree. Ladders can be computed using Lemma 3. The pointers and lookup tables can be computed by traversing the 
tree, using the parallel Euler Tour algorithm introduced in Algorithm 2.

Pǎtraşcu’s bitmap. Navarro and Sadakane use the sparse bitmap of Pǎtraşcu [23] to represent a bitmap with 2τ 1’s and 
2τ wc 0’s using O (τ lg wc + τ wctt

lgt (τ wc)
+ (τ wc)3/4) bits and supporting rank/select queries in O (t) time. Pǎtraşcu demonstrated

how to use recursion to achieve a better redundancy. Given a sparse bitmap A of size n, the succinct representation of A is 
constructed as follows: Choose B ≥ 2 such that B lg B = ε lg n

t , and r = Bt = (
lg n

t )�(t) . We first divide the bitmap A into n/r
segments of size r. Each segment is stored in a succinct aB-tree. Each succinct aB-tree is constructed by dividing the bitmap 
into B independent segments. On each small segment, the author applies Lemma 3 of [23] recursively t times. In order to 
reduce the redundancy, on each application of the lemma, M memory bits are extracted from the values of the independent 
segments and stored, and the rest of the unextracted bits, called spill, are passed to the next iteration. Then, Lemma 5 of 
[23] is applied in each succinct aB-tree, storing the last spill and memory bits in the root of each aB-tree. For each segment 
of size r, the index in memory of the segment’s memory bits are stored. Additionally, the number of ones in each segment 
are stored in a partial sums vector and a predecessor structure to support rank and select operations, respectively.

The parallel algorithm to construct the Pǎtraşcu’s bitmap is similar to the parallel algorithm we used to construct the
RMMT in Section 3.2. First, we construct the n/r succinct aB-trees in parallel. On each aB-tree, we divide the bitmap on 
B independent bitmaps of size r/B , similar to the PSTA algorithm. We apply Lemma 3 of [23] recursively on each small 
bitmap, t times. Then, we apply Lemma 5 of [23] in each succinct aB-tree, storing the final spill and memory bits in the root 
of each aB-tree. After that, all the n/r succinct aB-trees are built with O (n) work and O (t) span. The next step consists of 
storing the values of the root of each aB-tree. To support the rank operation, we compute in parallel the partial sum vector 
of these values with O (n/r) work and O (lg(n/r)) span using a parallel prefix sum algorithm. To support the select operation, 
we use a fusion tree. Below, we will explain how to construct a fusion tree in parallel with O (n/r) work and O (lg lg(n/r))
span. With all these steps, Pǎtraşcu’s sparse bitmap can be computed in parallel with r = (

lg n
t )�(t) , in O (n + ntt

lgt n
) work, 

O (t + lg( ntt

lgt n
)) span and O (n) working space. In the context of succinct trees, the work is O (τ wc + τ wctt

lgt τ wc ), the span is 

O (t + lg( τ wctt

lgt (τ wc)
)) and the working space is O (τ wc).

Fusion tree. A fusion tree stores an array A of size n of w-bit integers, supporting predecessor/successor queries in O (lgw n)

time. A fusion tree is essentially a B-tree with branching factor w1/5, and therefore, if we can construct a B-tree over the 
array A in parallel, we also obtain a parallel algorithm to construct fusion trees. In [36], Wang and Chen present a parallel 
algorithm to construct B-trees in O (lg lg n) span, for a sorted list. The lg τ values of the accumulated weights sequence used 
to answer fwd_search queries are always increasing. Therefore, we can apply the algorithm described in [36] to construct 
the corresponding B-tree. Henceforth, we will consider the array A as a sorted list of n keys. Although the algorithm of 
Wang and Chen is based on the EREW model, it can be applied in SMP systems without any modifications. If there are p
available cores, the complexity of the algorithm is O (n/p).

Given the sorted list A, the algorithm of Wang and Chen constructs an uniquely defined B-tree with branching factor m
and the following properties:

• The B-tree has the minimal height h = �lgm(n + 1)� + 1.
• The root owns �(n + 1)/mh − 1� keys.
• There exists an integer c, 1 < c ≤ h + 1, such that all the nodes of the B-tree above the c-th level contain m − 1 keys 

and all the non-leaf nodes below the c-th level contain �m/2� − 1 keys.
• The leftmost leaf of the B-tree contains s keys, �m/2� ≤ s ≤ m − 1. The rest of the leaves may contain s or s − 1 keys, 

but may not own more keys than the leaf node on its left.

With this well-defined B-tree, the parallel algorithm computes the position of each key of A in the B-tree. Each node of 
the B-tree is identified by its order in a BFS traversal. The details of how to assign a position to each key of A are shown 
in [36].
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Once we have the B-tree, we apply the sketch algorithm [24] to compress the keys in each node of the B-tree. We apply 
the sketch algorithm in parallel in each node of the tree, in O (1) span. Hence, the fusion tree can be computed with O (n)

work, O (lg lg n) span and O (n) working space.
In the NS-representation, to support fwd_search and bwd_search operations, τ fusion trees are constructed over 

τ sorted arrays of O (lg τ ) integers. Considering the previous parallel bounds, the τ fusion trees can be constructed with 
O (τ lgτ ) work, O (lg lgτ ) span and O (τ lgτ ) working space.

Range-minimum-query. In [37], Fisher and Heun present a data structure to answer range minimum/maximum queries in 
constant-time using O (n) bits over an array A of n elements. The array A is preprocessed by dividing it into �n/s� blocks, 
B1, . . . , B�n/s� , of size s = � lg n

4 �. A query from i to j, RMQ(A, i, j), is divided into at most three subqueries: One in-block
query over the block B	i/s
 , one out-of-block query over the blocks B	i/s
+1, . . . , B	 j/s
−1 and one in-block query over the 
block B	 j/s
 . If i and j belong to the same block, then only one in-block query is necessary. The in-block queries allow 
us to obtain the minimum/maximum element inside a block. On the other hand, out-of-block queries allow us to obtain a 
minimum/maximum element from consecutive blocks.

To answer in-block queries, authors use the fact that each block Bx can be represented by an unique canonical cartesian 
tree Ccan

Bx
. The canonical cartesian tree of Bx is a cartesian tree with a total order ≺ defined as follows: Bx[i] ≺ Bx[ j] iff 

Bx[i] < Bx[ j], or Bx[i] = Bx[ j] and i < j. The idea is to precompute all the answers for all Cs possible canonical carte-
sian trees, where Cs = 1

s+1

(2s
s

)
is the number of the rooted trees on s nodes. Thus, all the answers are stored in a table 

P [1, Cs][1, s][1, s]. The first dimension of the table P corresponds to a descriptor of the blocks of size s. For all �n/s� blocks 
of A, their descriptors are stored in an array T , requiring O (s) time to compute each one [37].

To answer out-of-block queries, the minimum/maximum element of each block is stored in an array A′[1, n′], where n′ =
�n/s�. The array A′ is divided into �n′/s� blocks, B ′

1, . . . , B
′
�n′/s� . A RMQ query over A′ is answered as before: one out-of-block 

query and two in-block queries. The in-block queries can be answered by computing the descriptor of each block of A′ , 
storing them in an array T ′ and reusing the lookup table P . To answer the out-of-block queries of A′ , a two-level storage 
scheme is used. s contiguous blocks of A′ are grouped into a superblock consisting of s′ = s2 elements. We precompute all 
the answers in A′ that cover at least one such superblock and store them into a table M . Similarly, we precompute all the 
answers in A′ that cover at least one block, but not over a superblock and store them into a table M ′ . Thus, to find the 
minimum/maximum element inside a superblock, we need to use the table M twice. Summarizing, an out-of-block query 
of A can be decomposed into two in-block queries in A′ (using T ′ and P ), two out-of-block queries in A′ (using M ′) and 
one out-of-superblock query in A′ (using M).

Finally, the solution of Fisher and Heun has O (n) construction time, O (lg3 n) construction space (over the O (n) space of 
the structure) and O (1) query time.

Since the minimum/maximum operation is associative, we can use a domain decomposition strategy to parallelize the 
construction of the solution of Fisher and Heun. In a domain decomposition strategy, the input array is divided into subar-
rays, and then each subarray is processed in parallel. Then, all the processed subarrays are merged. Thus, we can obtain a 
parallel solution with T1 = O (n) work, T∞ = O (lg n) span and the same space complexity. The term O (lg n) is due to the 
traversal of the blocks of size s = � lg n

4 �, which is done sequentially.
In the context NS-representation, we need to answer queries over the root of the τ RMMTs. Therefore, to answer range 

minimum/maximum queries we can construct the solution in [37] with O (τ ) work, O (lgτ ) span and O (τ + lg3 τ ) working 
space.

Degree, child and childrank operations. To support degree, child and child_rank, we need to compute marked blocks. 
Remember that pioneers are the tightest matching pairs of parentheses (i, j), with j = find_close(i), such that i and j
belong to different blocks. A marked block is a block that has the opening parenthesis of a pioneer (i, j) such that i and j
do not belong to consecutive blocks. To compute such marked blocks, we need to apply the find_close operation over 
all the τ blocks. Since the find_close operation can be computed in constant time, all marked blocks can be computed 
with O (τ ) work and O (1) span. The child and child_rank operations additionally need to construct a sparse bitmap 
C for each marked block, which encodes the number of children of the marked block, in left-to-right order, as gaps of 0’s 
between 1’s. Therefore, to construct each bitmap it is enough to find the position of each 1 in the bitmap. To do so, we 
perform a parallel prefix sum over the blocks fully contained in a marked block. Let j be a marked block. The bitmap C j of 
j can be constructed as follows: for each block j′ fully contained in j, if j′ has at least one child of j, we obtain the number 
of children of j′ . If j′ is not a marked block, then the number of children corresponds to n j′ (the number of minima of 
block j′); if j′ is a marked node, the number of children is 1. Notice that if j′ is marked, then the blocks contained in j′
do not have any children of j and they will not be considered for the rest of the computation of C j . After that, we perform 
a parallel prefix sum over the blocks that do have some children of j, considering their left-to-right order. The result of 
the prefix sum corresponds to the position of all the 1’s in C j . The final step is to write, in parallel, all the 1’s that they 
correspond to. Following the same idea, we can compute a bitmap C that represents the concatenation of all the bitmaps 
of the marked nodes. The parallel prefix sum is the most expensive step of this algorithm, and its work is O (τ ), its span 
is O (lgτ ) and its working space is O (τ lg wc) bits, which is dominated by the array of size O (τ ) used in the prefix sum, 
where each element uses O (lg wc) bits.

Thus, with w = �(lg n) we have the following theorem:
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Table 2
Datasets used in the experiments.

Dataset Number of nodes (n) Depth

wiki 249,376,958 5
prot 335,360,503 26
dna 577,241,094 305
ctree 1,073,741,823 30
osm 2,337,888,180 3

Theorem 2. A (2n + O (n/ lgc n))-bit representation of an ordinal tree on n nodes and its balanced parenthesis sequence can be 
computed with O (n + n

lgc n
lg( n

lgc n
) + cc) work, O (c + lg( ncc

lgc n
)) span and O (n lgn) bits of working space. This representation supports 

the operations in Table 1 in O (c) time, with c > 0.

Proof. Each of the τ RMMTs can be constructed with O (lgc n) work, O (lg lgc n) span and O (lgc n lg lgc n) bits of working 
space using Theorem 1. All the τ RMMTs can be constructed with O (n) work, O (lg lgc n) span and O (n lg n) working space. 
Using the results of this section, with t = c, the additional data structures can be constructed with O (n + n

lgc n
lg( n

lgc n
) + cc)

work, O (c + lg( ncc

lgc n
)) span and O (n + n

lgc−1 n
) working space. Thus, the total work is O (n + n

lgc n
lg( n

lgc n
) + cc), the maximum

span is O (c + lg( ncc

lgc n
)) and the total working space is O (n lg n) bits. �

4. Experimental results

In this section we present the experimental results of the implementations of our algorithms PSTA and PFEA.

4.1. Experimental setup

We implemented the PSTA algorithm in C and compiled it using GCC 4.9 with optimization level -O2 and using 
the -ffast-math flag.4 All parallel code was compiled using the GCC Cilk branch. The same flags were used to compile
libcds [38] and sdsl [39], which were written in C++.

Table 2 shows the five input datasets that we used in our experiments. The first two datasets were suffix trees built out of 
the DNA and protein data from the Pizza & Chili corpus,5 using code from http :/ /www.daimi .au .dk /~mailund /suffix _tree .html. 
The next two datasets were XML trees built out of the Wikipedia6 and OpenStreetMap7 dumps. The final input dataset was 
a complete binary tree of depth 30.

The experiments were carried out on a machine with four 16-core AMD Opteron™ 6278 processors clocked at 2.4 GHz, 
with 64 KB of L1 cache per core, 2 MB of L2 cache shared between two cores, and 6 MB of L3 cache shared between 8 
cores. The machine had 189 GB of DDR3 RAM, clocked at 1333 MHz.

Running times were measured using the high-resolution (nanosecond) C functions in <time.h>. Memory usage was 
measured using the tools provided by malloc_count [40].

4.2. Experimental results of the PSTA algorithm

To evaluate the performance of our PSTA algorithm, we compare it against libcds and sdsl, which are state-of-the-art 
implementations of the RMMT. Both assume that the input tree is given as a parenthesis sequence, as we do here. Our 
implementation of the PSTA algorithm deviates from the description in Section 3.2 in that we do not store the array n′ , 
since libcds and sdsl do not store it and that the prefix sum computation in line 22 of the algorithm is done sequentially 
in our implementation. This changes the running time to O (n/p + p) but simplifies the implementation. Since p � n/p for 
the input sizes we are interested in and the numbers of cores available on current multicore systems, the impact on the 
running time is insignificant. In our experiments, the chunk size s was fixed at 256.

4.2.1. Running time and speed-up
Table 3 shows the wall clock times achieved by psta, the sequential version of psta, called seq, libcds, and sdsl

on different inputs. Each time is the median achieved over five non-consecutive runs, reflecting our assumption that slightly 
increased running times are the result of “noise” from external processes such as operating system and networking tasks. 
Fig. 7 shows the speed-up compared to the running times of seq, and Fig. 8 shows the speed-up compared to sdsl.

4 The code and data needed to replicate our results are available at http :/ /www.inf .udec .cl /~josefuentes /suctree.
5 http :/ /pizzachili .dcc .uchile .cl.
6 http :/ /dumps .wikimedia .org /enwiki /20150112 /enwiki-20150112-pages-articles .xml .bz2 (January 12, 2015).
7 http :/ /wiki .openstreetmap .org /wiki /Planet .osm (January 10, 2015).

http://www.daimi.au.dk/~mailund/suffix_tree.html
http://www.inf.udec.cl/~josefuentes/suctree
http://pizzachili.dcc.uchile.cl
http://dumps.wikimedia.org/enwiki/20150112/enwiki-20150112-pages-articles.xml.bz2
http://wiki.openstreetmap.org/wiki/Planet.osm
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Table 3
Running times of libcds, sdsl, and PSTA, in seconds. seq corre-
sponds to the sequential execution of PSTA.

p wiki prot dna ctree osm

libcds 33.17 44.27 75.93 140.71 339.43
sdsl 1.94 2.67 4.57 8.35 18.10
seq 2.81 4.10 7.25 12.14 28.00

seq 2.81 4.10 7.25 12.14 28.00
1 2.81 4.10 7.15 12.17 28.05
4 .72 1.05 1.86 3.05 7.07
8 .40 .58 .95 1.57 3.55
12 .31 .43 .72 1.12 2.55
16 .24 .32 .55 .85 1.89
20 .19 .29 .49 .74 1.58
24 .19 .26 .42 .68 1.45
28 .16 .25 .43 .62 1.30
32 .18 .25 .38 .62 1.16
36 .20 .21 .36 .52 1.08
40 .21 .23 .35 .50 1.04
44 .22 .25 .34 .51 .97
48 .21 .26 .37 .49 .99
52 .27 .30 .36 .50 .93
56 .30 .36 .42 .50 .93
60 .27 .40 .39 .50 .93
64 .30 .33 .38 .54 .90

Fig. 7. Speed-up of PSTA compared to seq.

Fig. 8. Speed-up of PSTA compared to sdsl.
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Fig. 9. Memory consumption of the algorithms psta, libcds and sdsl.

The differences in running times of the psta algorithm on one core and seq are insignificant. This implies that the 
overhead of the scheduler is negligible. The psta algorithm on a single core and sdsl outperformed libcds by an order 
of magnitude. One of the reasons for this is that libcds implements a different version of RMMT including rank and select
structures, while psta and sdsl do not. Constructing these structures is costly. On a single core, sdsl was about 1.5 times 
faster than psta, but neither sdsl nor libcds were able to take advantage of multiple cores, so psta outperformed both 
of them starting at p = 2. The advantage of sdsl over psta on a single core, in spite of implementing essentially the same 
algorithm, can be attributed to the lack of tuning of psta.

Up to 16 cores, the speed-up of psta with ctree and osm datasets is almost linear whenever p is a power of 2 and 
the efficiency (speed-up/p) is 70% or higher with respect to seq and 60% with respect to sdsl, except for ctree on 32 
cores. This is very good for a multicore architecture. When p is not a power of 2, speed-up is slightly worse. The reason 
is that, when p is a power of 2, psta can assign exactly one subtree to each thread (see Algorithm 4), distributing the 
work homogeneously across cores without any work stealing. When the number of threads is not a power of two, some 
threads have to process more than one subtree and other threads process only one, which degrades performance due to the 
overhead of work stealing.

There were three other factors that limited the performance of psta in our experiments: input size and resource con-
tention with the OS.

Input size. For the two largest inputs we tested, osm and ctree, speed-up kept increasing as we added more cores. For
wiki, prot and dna, however, the best speed-up were achieved with 28, 36 and 44 cores, respectively. Beyond this, the 
amount of work to be done per thread was small enough that the scheduling overhead caused by additional threads started 
to outweigh the benefit of reducing the processing time per thread further.

Resource contention. For p < 64, at least one core on our machine was available to OS processes, which allowed the re-
maining cores to be used exclusively by psta. For p = 64, psta competed with the OS for available cores. This had a 
detrimental effect on the efficiency of psta for p = 64.

The network topology of our machine may also impact in the performance of our algorithm. The four processors on 
our machine were connected in a grid topology [41]. Up to 32 threads, all threads can be run on a single processor or 
on two adjacent processors in the grid, which keeps the cost of communication between threads low. Beyond 32 threads, 
at least three processors are needed and at least two of them are not adjacent in the grid. This may increase the cost of 
communication between threads on these processors. In Section 4.5, we will discuss about the relationship of the topology 
of multicore machines and the performance of parallel algorithms.

4.3. Memory usage

We measured the amount of working memory (i.e., memory not occupied by the raw parenthesis sequence) used by
psta, libcds, and sdsl. We did this by monitoring how much memory was allocated/released with malloc/free and 
recording the peak usage. For psta, we only measured the memory usage for p = 1. The extra memory needed for thread 
scheduling when p > 1 was negligible (less than 2% of extra memory for large p and large datasets). The results are shown 
in the Fig. 9. Even though psta uses more memory than both libcds and sdsl, the difference between psta and sdsl
is a factor of less than 1.3. The difference between psta and libcds is no more than a factor of three and is outweighed 
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Table 4
Running times of PFEA algorithm, in seconds. seq corresponds to the sequential execution of PFEA. Columns with the superscript +16 and +32 represent 
the running times of PFEA algorithm by artificially increasing the workload with 16 and 32 CAS operations per edge, respectively. The best parallel times 
are shown using bold typeface.

p ctree25 prot dna ctree25+16 prot+16 dna+16 ctree25+32 prot+32 dna+32

seq 5.67 52.87 31.33 55.04 473.92 275.06 102.94 887.61 514.73

1 6.07 34.83 57.29 54.99 275.23 474.07 102.80 514.09 886.01
4 1.68 9.35 15.62 14.22 70.84 121.92 26.15 130.30 224.86
8 1.05 5.77 9.80 7.33 36.39 62.79 13.32 66.35 114.42

12 0.87 3.99 6.90 5.02 25.18 43.23 8.99 45.02 77.49
16 0.73 3.66 5.57 3.91 19.59 33.50 6.86 34.37 59.15
20 0.76 3.42 5.53 3.21 16.06 27.61 5.58 28.16 48.26
24 0.76 3.41 5.25 2.77 13.91 24.03 4.73 23.96 41.04
28 0.66 3.28 5.36 2.47 12.40 21.23 4.16 20.87 36.05
32 0.67 3.37 5.71 2.30 12.52 19.49 4.08 18.62 35.22
36 0.68 3.23 5.57 2.27 11.61 19.95 3.71 18.70 32.29
40 0.68 3.15 5.48 2.16 10.91 18.75 3.38 17.17 29.59
44 0.68 3.16 5.44 2.04 10.20 17.70 3.19 15.98 27.56
48 0.69 2.97 5.19 1.92 9.67 16.79 3.00 15.02 25.82
52 0.64 3.05 5.37 1.84 9.23 16.01 2.83 14.12 24.33
56 0.65 3.01 5.33 1.79 8.83 15.18 2.71 13.37 22.87
60 0.61 3.19 5.35 1.72 8.46 14.75 2.58 12.63 21.82
64 0.71 3.05 5.18 1.80 8.29 15.13 2.55 12.32 20.90

Fig. 10. Speedup of the PFEA algorithm with datasets ctree25, dna and prot.

by the substantially worse performance of libcds. The reduced working space used by libcds is due to the fact that 
its implementation does not store the array of excess values. Instead, libcds stores rank/select structures over the input 
bit vector P , computing excess values with excess(i) := 2 × rank1(P , i) − i, where rank1(P , i) gives the number of 1s on 
P up to the index i. Part of the higher memory usage of psta stems from the allocation of e′ , m′ and M ′ arrays which 
store the partial excess values in the algorithm. Storing these values, however, is a key factor that helps psta achieves very 
good performance. The space used by our algorithm can be reduced by storing local excess values in the array e′ , instead of 
global values. However, reducing the space in such way will complicate the implementation of the queries over the RMMT.

4.4. Experimental results of the PFEA algorithm

Table 4 shows the running times of the PFEA algorithm with the datasets prot, dna and an additional dataset
ctree25 that corresponds to a complete binary tree of depth 25. To compute the speedups, we used times obtained 
by seq. The best parallel times are identified using a bold typeface.

Fig. 10 shows the corresponding speedup of the PFEA algorithm. Up to 16 threads, the speedup is almost linear, ob-
taining at least 49% of efficiency (speedup/p) for the ctree25 dataset, that is, our algorithm reaches at least 49% of the 
linear speedup (the ideal). With more than 16 threads, the performance of our algorithm is poor, reaching at most 16% of 
efficiency for the prot algorithm and 64 threads. The poor efficiency of our algorithm is not explained by the DYM model. 
We think that it can be explained by its low workload. Algorithms with a low workload do not scale properly since the 
workload of their parallel tasks is not enough to pay the overhead of thread scheduling and memory transfers. In the case of 
the PFEA algorithm, each edge takes part of only a few comparisons and assignments. Therefore, the workload for each par-
allel task is not enough to take advantage of the 64 threads, even when we create �(p) parallel tasks. To demonstrate that 
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Fig. 11. Speedup of the PFEA algorithm with datasets ctree25, dna and prot, artificially increasing the workload with 16 CAS operations per edge.

Fig. 12. Speedup of the PFEA algorithm with datasets ctree25, dna and prot, artificially increasing the workload with 32 CAS operations per edge.

the low workload is the reason of the low efficiency, we increased artificially the workload of our implementation. Between 
the lines 5 and 9, we added 16 and 32 CAS operations. On each iteration of the loop of line 5, each CAS operation was 
executed over E T [i], increasing the workload for each edge. The complexity and correctness of our algorithm do not change 
with the addition of these extra operations. Columns 5–10 of Table 4 show the resulting running times after adding 16 and 
32 extra operations. Figs. 11 and 12 show the corresponding speedup. With 16 extra operations, the efficiency was at least 
48% for the ctree25 dataset and 64 threads. For 16 threads, the efficiency increased, reaching a 88% for the ctree25
dataset. With 32 extra operations, the efficiency was at least 63% up to 64 threads and 94% up to 16 threads.

Another factor that, we think, limited the performance of the PFEA algorithm was the topology of the experiment. As 
was mentioned before, our machine has four processors connected in a grid topology, which involves communication costs 
among processors. Each processor executes up to 16 threads. We observe that in the Fig. 10, the algorithm scales up to 
16 threads. With more threads, the communication costs may affect the scalability. With more workload, Fig. 11 shows a 
linear scalability up to 32 threads. After 32 threads, the efficiency of the algorithm decreases. For the experiment with 32 
extra operations, Fig. 12 shows a similar behaviour, with the difference that after 32 threads, the efficiency is better than in 
Fig. 11. For 64 threads, all the speedups have a slowdown, since the PFEA algorithm has to compete with the OS for the 
available cores. In Section 4.5 we will discuss more about the effects of the machine topology in the performance of the
PFEA algorithm.

4.5. Discussion

For domains where trees have billions of nodes, the psta algorithm exhibits a good speed-up up to 64 cores. The 
speed-up is degraded for trees with fewer nodes. However, even in such cases, our algorithm reaches good speed-up up to 
32 cores. Additionally, our algorithm outperforms the state-of-the-art implementations using only p = 2 threads. Considering 
all of this, the psta algorithm is a good option to construction succinct trees in commodity multicore architectures.
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With respect to the working space, our psta algorithm is competitive with sdsl and it does not use more than three 
times the memory used by libcds, which is the slowest algorithm. Despite our algorithm using more memory than sdsl
and libcds, it is up to 20 times and 376 times faster with 64 cores, respectively.

The scalability of the PFEA algorithm up to 16 threads is good in practice (nearly 50% efficiency). However, the lack 
of workload of our algorithm prevents it from obtaining a good practical scalability with more threads. In this kind of 
algorithms, we cannot expect a better scalability adding more threads. Nevertheless, this poses an interesting problem: 
For a given algorithm, find the maximum number of threads that achieve at least a 50% efficiency. Once we find such 
number, the rest of the threads may be used potentially in other procedures. The implementation of multicore algorithms is 
non-trivial, since it needs to take care about the communication costs, memory hierarchy, cache coherency, etc, which may 
affect the performance. Therefore, we consider a parallel algorithm with a 50% efficiency a good parallel implementation.

It is important to emphasize that this work involves what we think are important contributions to practical implemen-
tations of parallel algorithms in commodity architectures. In a way, then, topology has become important again, though 
thankfully not a show-stopper. For example, in the Figs. 7, 8 and 10, we observed that algorithms had a slowdown of the 
speedup at 16, 32, 48 and 64 threads. We hypothesize that the factor that generated the slowdown of the speedups of the 
algorithms had to do with the topology of the machine where we ran our experiments. The four processors on our machine 
were connected in a grid topology [41]. This increases the cost of communication between threads on these processors. 
Additionally, there exist other factors of the architecture that can impact the performance of multicore algorithms to con-
struct succinct data structures, such as, cache inclusion policy which may vary for each new architecture, special wiring 
among cores and among caches, and cache coherency protocol. The impact of all of these factors in the implementation of 
multicore construction algorithms need to be studied in more detail.

5. Conclusions and future work

In this paper, we demonstrated that it is possible to improve the construction time of succinct trees using multicore 
parallelism. We introduced a practical algorithm with O (n) work and O (lg n) span, to construct a succinct representation 
of a tree with n nodes. This representation supports a rich set of operations in O (lg n) time. Our algorithm substantially 
outperformed state-of-the-art sequential constructions of this data structure, achieved very good speed-up up to 64 cores, 
and is to the best of our knowledge the first parallel construction algorithm of a succinct representation of ordinal trees. We 
also presented a second version which supports queries in O (c) time, with O (n + n

lgc n
lg( n

lgc n
) +cc) work and O (c + lg( ncc

lgc n
))

span.
While we focused on representing static trees succinctly in this paper, the approach we have taken may also extend to 

the construction of dynamic succinct trees (e.g., [2]), of succinct representations of labelled trees, and of other succinct data 
structures that use succinct trees as building blocks (e.g., the succinct representation of planar graphs).
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