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ARTICLE INFO ABSTRACT
Keywords: Air pollution has been shown to have a direct effect on human health. In particular, PM; 5 has
Air quality forecasting been proven to be related to cardiovascular and respiratory problems. Therefore, it is important to

Meteorology forecast

. : have accurate models to predict high pollution events for this and other pollutants. We present
Fine particulate matter

Deep neural networks different models that forecast PMy s maximum concentrations using a Long Short-Term Memory

Machine learning (LSTM) based neural network and a Deep Feedforward Neural Network (DFFNN). Ten years of air

LSTM pollution and meteorological measurements from the network of monitoring stations in the city of
Santiago, Chile were used, focusing on the behaviour of three zones of the city. All missing values
were rebuilt using a method based on discrete cosine transforms and photochemical predictors
selected through unsupervised clustering. Deep learning techniques provide significant im-
provements compared to a traditional multi-layer neural networks, particularly the LSTM model
configured with a 7-day memory window (synoptic scale of pollution patterns) can capture
critical pollution events at sites with both primary and secondary air pollution problems.
Furthermore, the LSTM model consistently outperform deterministic models currently used in
Santiago, Chile.

1. Introduction

Santiago, the capital of Chile is known for its poor air quality, but over recent years a series of air quality plans have helped to
reduce this pollution. Forecasting of pollution episodes is critical for informing the public of such episodes as well as activating
pollution reduction efforts such as prohibiting the most polluting older vehicles and advising the public not to carry out outdoor
exercise during these periods. Santiago de Chile (33° S, 70° W, 600 m a.s.L.) has an urban area of 640 km? and a population of 6 million
and is situated in a 20 km wide valley between the Andes mountains and the coastal range (see Fig. 1). Due to an unfavourable
topographic and meteorological conditions for pollutant dispersion and ventilation during the cold season (between April and August)
(Toro et al., 2019), the Particulate Matter (PM) emissions from industry, transportation and heating do not disperse, increasing PM3 5
concentrations.

An important fraction of the PMj 5 (Particulate Matter smaller than 2.5 pm diameter) values recorded at the 10 monitoring stations
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Fig. 1. a) Map of South Americas showing the location of Santiago, Chile. b) The city of Santiago with colors indicating the height above sea level.
c) Circles indicate location of city's SINCA monitoring stations, circles in red indicate the stations with emphasis in this study. Stations P (many
missing data) and T (far from urban area) are not considered in this study. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

is due to secondary particle formation from chemical reactions involving nitrogen and sulfur oxides. PMy 5 has been identified as cause
of cardiovascular and respiratory mortality throughout the world (Liu et al., 2019a; Hajizadeh et al., 2020). It has also been associated
with an increase in the probability of developing Alzheimer's disease (Jung et al., 2015). Evidence exists of both short (day-to-day) and
long term (years) exposure to gaseous and particulate air pollution (Kim et al., 2015).
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Emission fields and atmospheric chemistry in the city show spatial variations across different zones (Usach, 2014; Langner et al.,
2020; Menares et al., 2020; Gallardo et al., 2018). The western zone is dominated by primary emissions generated by industries and
heating, while the eastern part acts as an urban receptor (Tagle et al., 2018), due to the predominant westerly winds, where secondary
particle formation, such as ozone becomes relevant.

Air quality monitoring has taken place in Santiago in a standardized manner since 1997 when the first attainment plan was
implemented (Toro et al., 2019) and currently the monitoring is under the responsibility of the Ministry of the Environment. The latest
attainment plan for Santiago can be found at (http://airesantiago.gob.cl/nuevas-medidas/, http://airechile.mma.gob.cl/comunas/
santiago).

The World Health Organization (WHO, 2021) “Guideline level” is recommended at 25 pg/m3 (24-h mean) as well as an annual
Guideline level of 10 pg/m3 for PM; 5. Chilean National PM, 5 standards are not so stringent as the international guidelines and are
monitored as 24 h moving averages and defined in terms of 4 ranges of increasing concentrations:

— Level A (good to moderate): maximum of 24-h average of PMj 5 is less than 80 pg/m3.

— Level B (unhealthy): maximum of 24 h average is between 80 pg/m> and 110 pg/m?>.

— Level C (very unhealthy): maximum of 24 h average is between 110 pg/m? and 170 pg/m>.
— Level D (hazardous): 24 h average is greater than 170 pg/m?>.

Levels B, C and D are considered as “episodes” and are reported on the news and fairly well understood by the population of the city.
In order to anticipate the occurrence of episodes it has become important to generate reports with a forecasting model. These fore-
casting models predict the city's air quality with an anticipation of one or more days, thus alerting the population of forthcoming
episodes and allowing restriction measures to be put into place.

The wide array of air quality forecasting models used elsewhere to predict potentially dangerous levels of pollution can be classified
into two main families: Deterministic and statistical models. Deterministic models provide real time simulations of the behaviour of
atmospheric components and include equations for particle interactions and chemical reactions. Details about local topography and
the sources of pollutant emissions are important to feed these models (Rouil et al., 2009; Mc Keen et al., 2007). In general, these models
require that the meteorology is provided as an input (Honoré et al., 2008) or is embedded into the algorithm, as in the WRF-Chem
model (Grell et al., 2005). Statistical models are based on the assumption that past values of relevant meteorological variables and
pollutant concentrations determine the actual concentration of a given pollutant such as PM3 s, such that similar combinations of the
identified predictor variables associated with future values of the pollutant are inputted. Linear regressions, artificial neural networks
(Thomas and Jacko, 2007; Oprea et al., 2016) and fuzzy systems (Ausati and Amamollahi, 2016) are some of the statistical models used
for PM; 5 forecasting. It has been reported that for short term particulate matter forecasting, artificial neural networks models have
similar or even better accuracy than deterministic models (Kukkonen et al., 2003: Fernando et al., 2012, Samal et al., 2021, Chen and
Li, 2021).

By the late 1990s, a multiple regression method was used to forecast the next day's probability of occurrence of heavy pollution
episodes in Santiago. At present the official model used by the ministry of the environment uses a numerical model of CO, in com-
bination with empirical relationships between CO and PM to forecast air quality for the next 72 h in Santiago as well as for many other
cities in central and southern Chile (Saide et al., 2016).

In recent years, in addition to deterministic models (Saide et al., 2016), statistical models (Perez and Salini, 2008; Moisan et al.,
2018) have been used for PM, 5 forecasting in Santiago, oriented towards anticipating episodes. These studies show that WRF-Chem,
linear models and feed forward artificial neural networks (FFNN) have the ability to forecast episodes with a comparable accuracy of
the order of 60%. This accuracy is significant to provide a protection to the population when episodes of high pollution are foreseen
(Borrego et al., 2008).

The computer resources necessary for the implementation of the deterministic models are in general substantially less than those
needed for statistical models. Also, deterministic models require precise emission inventories, which are not always available (Zhou
et al., 2017). Deep neural network models are convenient tools for air quality forecasting when several years of data, many input
variables and several monitoring stations are available. A Deep Neural Network (DNN) is defined as a Feed Forward Multilayer Net
(FFNN) that has from three to several tens of hidden layers. The simplest version of DNN is just an extension of the FFNN with a
convenient adaptation of the learning rule and is known as DFFNN. Other approaches are based on the spatial relationship between
data (Convolutional Neural Networks, CNN) or on the recurrence of each input (Recurrent Neural Networks, RNN). In particular, Long
Short-Term Memory cells, a derivation of RNNs, have been shown to be more accurate than a DFFNN for forecasting PM; 5 at Tehran,
where 4 years of data from 9 stations were used in order to train and test the models (Kaimian et al., 2019). Mao and Lee (2019) used
data from 77 stations in Taiwan to forecast Ozone, SO5 and PM; 5 concentrations with reasonable accuracy and extended these results
with TS-LSTME models in Beijing, Tianjin, and Hebei (Mao et al., 2021). Li et al. (2020) have shown that a combination of deep
algorithms is the best option for PM; 5 forecasting in Taiyuan city, China.

In this paper we present two approaches to forecast PMy 5 over Santiago. First a DFFNN model and second an LSTM network, thus
enabling a comparison of the results of dense networks with a recurrent network, which has the capacity to retain long-term infor-
mation in its memory. With both models we show that, based on an expanded database, we can significantly improve the accuracy of
the episode forecast. In particular, it is shown that the LSTM model is more suitable in this case, thanks to its ability to retain in-
formation on past events.
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Table 1
Species and measurement techniques used in the Santiago monitoring network. The monitoring stations where the species are measured are also
indicated (for the location, see Fig. 1). This information can be found at http://sinca.mma.gob.cl/.

Species Measurement technique Measurement location
Ozone (03) Ultraviolet photometry (THERMO 49i) O,R,N,F,Q,M,L, S
Nitrogen monoxide (NO) Chemiluminescence gaseous phase - THERMO 42i O,R,N,F,Q,M, L, S
Nitrogen dioxide (NO3) Chemiluminescence gaseous phase - THERMO 42i O,R,N,F,Q,M,L, S
Carbon monoxide (CO) Photometry of gas correlation filter -THERMO 48i O,R,N,F,Q,M,L, S
Sulfur dioxide (SO,) Pulsing fluorescence THERMO 43i O,R,N,F,Q,M, L, S
Particulate Matter (<10 pm) PM;o Tapered Element Oscillating Microbalance (TEOM)- THERMO 1400AB V,O,R,N,F,Q,M, L, S
Particulate Matter (<2.5 pm) PM; s Beta radiation attenuation - Met One Bam1020 V,O,R,N,F,Q,M,L,S
Meteorological variable Measurement technique Measurement location
Temperature Sensor MET ONE HMP35A O,R,N,F,Q,ML,S
Relative humidity Sensor MET ONE HMP35A O,R,N,F,Q,M,L, S
Wind speed Sensor MET ONE 020C O,R,N,F,Q,M,L, S
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Fig. 2. Daily hourly average O3, NO and NO,, levels for stations M, N and O. On the left, years 2005-2018. On the right, year 2019. Shading is an
indication of the standard deviation around mean values.
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Fig. 3. Daily hourly average PM, 5 and PM for stations M, N, O. On the left, years 2005-2018. On the right, year 2019. Shading is an indication of
the standard deviation around mean values.

2. Data and methodology
2.1. Air quality and meteorology monitoring station data

Hourly averaged concentrations of air pollutants and meteorological information are collected at 9 monitoring stations distributed
across the city of Santiago (Fig. 1). These stations are supervised by the Ministry of the Environment, which generates periodic quality
controls on the data. Meteorological data includes Temperature, Humidity and Wind speed. Average temperature in Santiago are 20 °C
in summer (DJF) and 9 °C in winter (JJA) and average annual precipitation is 300 mm, concentrated mostly in the cold season. Table 1
shows the pollutants and meteorological variables of interest measured in each station, including references to the instrumental
method used.

This study used data between 2005 and 2019, with 2005-2018 used for training (adjusting the parameters of our models), and 2019
for the test (to check the performance of our models, see Section 2.3). For this reason, Fig. 2 displays the daily cycle of 3 pollutants for
three representative stations from Eastern (station M), Central (station N) and Western (station O) Santiago, with specific and recurrent
pollutant patterns. We also observe in Fig. 2 that Station East displays urban receptor conditions, where the production of ozone is
enhanced, and secondary particle creation is relevant.

Average diurnal cycles for particulate matter PMy 5 and PM; are shown in Fig. 3. Central and West stations show similar behaviour,
except that Santiago West has more frequent high concentration episodes. According to the behaviour of aerosols and the oxidative
pollutants O3 and NOs in Santiago Central it could be described as an urban transition zone.
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2.2. Data interpolation to deal with missing data

It is normal for meteorological and pollution data measurements to have missing values so for this reason, it is relevant to have a
method that deals with these gaps in the dataset. For cases where the amount of missing data does not allow a reliable daily recon-
struction of the information, we use an efficient data filling method based on discrete cosine transforms (Garcia, 2010). This method is
a penalized least square regression based on the discrete cosine transform which describes the data in terms of the sum of cosine
functions oscillating at different frequencies. This method has been used successfully for geophysical records, as shown by. This
application is replicated by us to fill the gaps in the collected data.

The cosine transform (DCT) and its inverse (IDCT) are then used to iteratively find the X of the form
)?:1Dcr<roDCT(Wo<X—)?)+)?>> 16

whit W the weights assigned to each value. Finally, I' is a filtering tensor defined by

r— (1+s(z—ws("‘+)”)z)4 @

where i represents the ith element, s is the smoothing factor, which must be a positive scalar and n the amount of data used to predict.

2.3. Deep learning models

Given the positive results of particulate matter forecasting models using traditional multilayer neural networks developed for
Santiago (Perez and Reyes, 2006; Perez and Salini, 2008, Perez and Gramsch, 2016, Perez and Menares, 2018), we are looking for an
improvement in accuracy by introducing deep learning algorithms.

The variable we are aiming to forecast is the maximum of the 24 h moving average of PMj 5 for the following day. We focus on two
deep learning models, a Long- Short Term Memory model (LSTM) and a deep feed forward neural network (DFFNN).

2.3.1. Model architecture

Our algorithms LSTM and DFENN are based on the backpropagation algorithm. This is implemented by means of the initiation of a
forward propagation algorithm that computes the loss function L(6) (where 6 contains the weights ® and bias b of the Goodfellow
model (Goodfellow et al., 2016)). The gradients g are obtained by using the Zinkevich version of backpropagation (Zinkevich, 2003)
according to which:

& = V,L(Da;,Dp,) 2

where Da; is the actual values of PMy 5 and Dp; is the output of the model.
Both networks are optimized by using the Adam algorithm (Kingma and Ba, 2015) where the weights are obtained by calculating:
W =0 - 3
Vi+ €

The first and second moments, m;, and v, are estimated through:

7’1\)‘ :ﬁl'mr—llt(ﬁlt_ﬁl)gt (4)
1

~ _ Poom 1 + (1 — /7)2)&2

= ) (5)

Values used for f; and By are 0.9 and 0.999 respectively, € is a stabilization parameter used as 1le-6 following (Kingma and Ba,
2015).
LSTM and DFFNN algorithms are adjusted by minimizing the mean square absolute percent error as a loss function:

1 n
Loss = ;Zle (Y5 = Ya)2 (6)

Where Y; is the forecasted value and Y, is the observed value. This algorithm is based on a stochastic gradient descent which
considers the adaptive estimation of first and second order moments and is more economic in computational time when compared with
other training methods. In order to compare the results of the deep learning methods with traditional methods we implement a feed
forward multilayer network (FFNN). The output layer in all models has one neuron and the activation function in this layer is linear.
For other layers, depending on the model, the activation functions used are Sigmoid, ReLU (Eckle and Schmidt-Hieber, 2019) and
Softplus (Dugas et al., 2000):

Sigmoid (x) = 1/(1+e7¥) )
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Table 2
Configuration of the neuronal models used. In the second column the number of hidden Layers are specified, as well as the activation function for each
layer and the number of Neurons used in each of these.

Neural Network Layers Activation Neurons Batch
DFFNN 4 Relu-Softplus-Linear 45-25-01 20
LSTM 3 Relu-Relu-Sigmoid 64-64-01 34
MLP 3 Sigmoid-Linear 22-6-1 6

Correlation Matrix, Santiago
1.00
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0.50
£0.25

-0.00

Spearman Correlation

—0.25

—-0.50

0.18
—0.75

PM>s NO; ws Ox ~1.00

Fig. 4. Correlation matrix for PM, 5, NO,, Oy, (O3 + NOy), T.A (Thermal Amplitude) and WS (Wind speed) in day whit PM, 5 above 80 pg/m3. The
spearman correlation is represented as a colour scale, with red indicating R = 1 and blue indicating R = -1. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

ReLU (x) = max (0,x) 8)

Softplus (x) = In (1+¢€*) (C)]

In Table 2 the architecture, activation functions and training details of the nets used in this study are shown. Additionally, our LSTM
algorithm is configured with a 7-day memory window. This value of 7-days is selected because it is within the time of the synoptic
factors of contamination (Liu et al., 2019b; Rutllant and Garreaud, 1995).

2.3.2. Choice of PMy 5 predictor
After exploration (Fig. 4 and previous models) we found that the most convenient input variables for a given station are:

1) 24 h average of PM; 5 concentrations
2) 24 h average of PM;( concentrations
3) 24 h average of PM, 5 concentration at closest station
4) 24 h average of NO, concentrations
5) 24 h average of wind speed
6) Thermal amplitude in last 24 h
7) 24 h average of Oy concentration
8) maximum of O3 hourly concentration in last 24 h
9) 24 h average of NO/NO; ratio
10) 24 h average of CO concentrations

All 24 h averages are calculated between 20:00 of the previous day and 19:00 of the present day. These times were chosen because
when a PM; 5 forecasting model is in operation, a report to the population is emitted at 20:30 of the present day in order to inform them
about expected conditions for the following day. These input variables are the best predictor variables selected from a larger pool used
in particulate matter concentration forecasting models in Chilean cities in the past (Perez, 2012; Perez and Menares, 2018; Perez et al.,
2020). These variables have been selected with the following criteria:
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Fig. 5. K-means with K = 6 based on hourly values of PM, 5, O3 and CO in station M (East side).

Initial and boundary conditions: The first two variables take into account the trend in the air pollutant concentrations. The third
variable takes the nearest neighboring station with PM; 5 values and is used to identify the possible transport of aerosols.

High correlation: Fig. 4 shows the Spearman correlation map (chosen because it better represents non-normal variables and outlier
data (de Winter et al., 2016)) for station O west of Santiago in days whit concentration of PMa 5 > 80 pg/m®. Wind speed is an indicator
of ventilation and shows a significant anticorrelation with PM; 5 concentrations. Large thermal amplitudes in winter are an indicator of
irradiative inversions which trap pollutants near the surface (positive correlation in Fig. 5). We also observe strongly positive cor-
relation between PM; 5 and indicators of secondary particle formation such as Ox and NO5 (Menares et al., 2020). For this reason, the
variables of wind speed, thermal amplitude, Oy and NO, are selected.

Pollution patterns: Fig. 5 shows a 3-D K-means (K = 6) clustering (Nainggolan et al., 2019) for hourly values of CO, Ogyax and PMj 5
for station O in the west of the town. The idea of this clustering is to identify atmospheric configurations relevant for pollution
conditions. Affinity is obtained by calculating Euclidean distance with normalized variables. The six clusters have been chosen using
the Nainggolan et al., 2019 approach, where the Sum Squared Error (SSE) of the values generated by distance between the data and the
cluster center is calculated as indicator of optimization of clusters. We find that the SSE value is minimized with six clustering. Six
clusters are generated which can be distinguished by colors. The green cluster is of particular interest because it is formed with high
values of PMs 5 and Ospax and low values of CO, which may represent the condition of high photochemical activity in the city. The
yellow cluster by contrast is obtained with low values of Ogpyax and high values of PMj 5 and CO, which identify situations of primary
emissions from fossil fuels. The red and blue clusters may be identified with situations of low pollution. For this reason, the variables
Osmax and CO are chosen. On the other hand, the NO/NO- ratio was included as an input variable so as to quantify primary and
secondary emissions from transportation (Mavroidis and Chaloulakou, 2011).

2.4. Statistical evaluation of models

In order to evaluate the quality of the results of the different forecasting models we calculate the following statistical parameters:
Correlation (R), Normalized Percent Error (NPE), Fractional Bias (FB) and Normalized standard deviation (NSD), which are defined by
the expressions:

(O = ) ) 0a = () )

k= ©
VO = () Y0 = ()
NPE = w o
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12)

Where triangular brackets indicate average over test set, yf are the forecasted 24 h average values and ya are the actual values. The
reason to consider NPE is because this quantity avoids amplification of errors in the case of low concentrations. Bias measures sys-
tematic errors, where a positive value indicates a tendency of the model to under-forecast and a negative value a tendency to over-

10
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Table 3
Presents the relevant statistical indices measuring performance of the three models for the case of station M (east side), station N (center)
and station O (west side).

Station M

MODEL NPE R FB NSD
DFFNN 20% 0.80 0.031 0.82
LSTM 21% 0.86 0.048 0.78
MLP 29% 0.68 0.060 0.68
Station N

MODEL NPE R FB NSD
DFFNN 26% 0.78 0.19 0.82
LSTM 24% 0.87 0.13 0.84
MLP 38% 0.68 0.42 0.69
Station O

MODEL NPE R FB NSD
DFFNN 27% 0.77 0.70 0.80
LSTM 26% 0.88 0.45 0.89
MLP 32% 0.70 0.80 0.66

10 15 20 25 30 35 40 45 50
Percent Error [in %]
Fig. 8. Normalized percent errors for all stations in Santiago using the three models.
Table 4

DFFNN confusion matrix for station O in 2019 where A, B, C and D represent range of concentration of Level A (good to moderate), Level B (un-
healthy), Level C (very unhealthy) and Level D (hazardous) respectively.

A B C D %
A 55 10 2 0 82%
B 13 21 6 1 51%
C 0 1 8 1 80%
D 0 0 1 1 50%
% 81% 66% 47% 33% 71%

forecast. NSD gives a measure of the dispersion of the model results as compared with the observed values.
3. Results and discussion

After training the different models using 2005-2018 data, we performed a test with 2019 winter data (from June 1st to September
30) where the target value is the maximum of the 24 h average of PM; 5 for the following day. In Fig. 6 we display the comparison
between forecasted and observed values for a station located in Eastern Santiago (M station).

We can verify that LSTM and DFFNN have a similar performance in Normalized Percent Error (NPE ~ 20%) but LSTM has the best
performance in terms of Pearson Correlation (R = 0.86). It is evident from the graphs that LSTM is more accurate than the other models
for the forecasting of the highest concentrations that occur during the first 20 days of the month of July. In Fig. 7 we show the results
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Table 5
LSTM confusion matrix for station O in 2019 where A, B, C and D represent range of concentration of Level A (good to moderate), Level B (unhealthy),
Level C (very unhealthy) and Level D (hazardous).

A B C D %
A 62 3 1 0 94%
B 6 20 5 0 65%
C 0 8 10 1 53%
D 0 0 1 2 67%
% 91% 65% 59% 67% 79%
Table 6

MLP confusion matrix for station O in 2019 where A, B, C and D represent range of concentration of Level A (good to moderate), Level B (unhealthy),
Level C (very unhealthy) and Level D (hazardous).

A B C D %
A 68 19 3 0 76%
B 0 12 10 3 48%
C 0 1 4 0 80%
D 0 0 0 0 -
% 100% 38% 24% 0% 71%
Table 7
Ability of different models to achieve correct level forecasting for station O in Santiago.
Model Reference Correct level forecasting
WRF-CHEM Saide et al., 2011 55%
WRF-CHEM Saide et al., 2016 63%
MLP Perez and Salini, 2008 68%
LSTM This paper 79%

for the forecasting of the three models for station O (west of the city), where more high concentration episodes are observed as
compared to in the East. Here the LSTM gives the best results with R = 0.87 and NPE = 26,21%. Similar results have been recently
found based on LSTM models, combined with Support Vector Regression (Janarthanan et al., 2021) or modifying the connection layers
(Lag-FLSTM, Ma et al., 2020). It can be seen that all three models are not very efficient at forecasting the high concentrations that occur
during July. Although the traditional MLP does not have the best average performance, it seems to have a similar accuracy to DFFNN
but is less efficient than LSTM for the detection of these episodes.

Moving from east to west, the accuracy of forecasting tends to decrease (Table 3). This may be due to the fact that the central and
west zone of the city is dominated by primary emissions, and here some of the non-vehicular sources show variations and episodic
peaks (Lapere et al., 2020) that may not be captured by the models. This behaviour can be illustrated by representing the values of
normalized percent errors in different stations across the city with degrees of coloring (Fig. 8).

These confusion matrices (Table 4, Table 5, and Table 6) not only allow the visualization of whether the level forecasted is correct
but also, to what levels the erroneously forecasted levels go. In the case of station O, where an important number of episodes are
observed, LSTM has a 91% agreement for level A forecasting and 94% of the level A forecasted really occurred. Considering all the four
levels, 79% of them are forecasted correctly (Table 5).

We observe that LSTM is the model that has the best performance for PMj 5 forecasting in Santiago, both in the east of the city,
where secondary particle formation is more relevant and, in the west, where primary emissions are predominant. Additionally we
verified the non-stationarity of the observed series of PMj 5 in 2019 with a Dickey-Fuller test (Cheung and Lai, 1995) in Central, West
and East stations (p value <0.005). Similar results to ours show that the extreme events of non-stationary series are usually better
represented by non-linear models with temporary dependence (Guoyan et al., 2021; Lu et al., 2021). This suggests that LSTM models
with temporal units are a good approach for the forecasting of air pollutant non-stationarity time series with extreme events.

We can compare the results of our LSTM model with those of deterministic and MLP models previously reported for Santiago
(Table 7). The current operating model correctly predicts 63% of PM, 5 levels (Saide et al., 2016), LSTM model obtains a 79% success
rate. Our results show that a deep learning model approach can improve air quality and be adaptive to changes and evolution of the
city.

4. Conclusions
Operating a reliable air quality forecasting model in populated cities is one of the most important tools for health protection. We

have shown that deep learning neural networks are among the recommended methodologies when creating public policies that seek to
improve pollution conditions which will help to develop more sustainable cities.
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Deep Learning offers the scope and possibility for optimization based on historical data. Therefore, it is very important to have a
network of monitoring stations that generate continuous data with supervision guaranteeing only a small percentage of missing values.
The feasibility of reconstructing these gaps in the data with the DCT-based method has been shown, allowing continuity of temporal
data to carry out the model training.

We show that LSTM models can better respond to PM, 5 event prediction by selecting the appropriate pollutant and meteorological
variables. In particular, the LSTM models through their memory units can remember important synoptic patterns over time which are
useful for PM, 5 forecasting. The results obtained with this model configuration are comparable with that obtained in other modified
LSTM models for air quality.

In stations where secondary pollutants such as O3 are predominant (east of the city) our models obtain better results than in stations
where there is a preponderance of primary sources (west of the city). Stations with primary sources of pollution have larger variations
from the typical patterns, making it difficult to forecast aerosols.

Overall, for Santiago de Chile LSTM models were the best available tool for the development of statistical air pollution forecasting
models and these are easily adaptable to different locations.
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