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Abstract Connexins form hemichannels at undocked plasma
membranes and gap-junction channels (GJCs) at intercellular
contacting zones. Under physiological conditions, hemichan-
nels have low open probabilities, but their activation under
pathological conditions, such as ischemia, induces and/or
accelerates cell death. Connexin 46 (Cx46) is a major
connexin of the lens, and mutations of this connexin induce
cataracts. Here, we report the effects of linoleic acid (LA) on
the electrical properties of Cx46 GJCs and hemichannels
expressed in Xenopus laevis oocytes. LA has a biphasic
effect, increasing hemichannel current at 0.1 μM and
decreasing it at concentrations of 100 μM or higher. The
effects of extracellular and microinjected LA conjugated to
coenzyme A (LA-CoA) suggest that the current activation
site is accessible from the intracellular but not extracellular
compartment, whereas the current inhibitory site is either
located in a region of the hemichannel pore inaccessible to
intracellular LA-CoA, or requires crossing of LA through an
organelle membrane. Experiments with other fatty acids
demonstrated that the block of hemichannels depends on the
presence of a hydrogenated double bond at position 9 and is
directly proportional to the number of double bonds.
Experiments in paired oocytes expressing Cx46 showed that

LA does not affect GJCs. The block by unsaturated fatty
acids reported here opens the possibility that increases in the
concentration of these lipids in the lens induce cataract
formation by blocking Cx46 hemichannels.
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Introduction

A gap-junction channel (GJC) is formed by head-to-head
docking of two hemichannels, one from each adjacent cell.
These hemichannels, also named connexons, are hexamers
of proteins called connexins. The presence of undocked
hemichannels at the plasma membrane has been demon-
strated in several cell types, including lens fibers [16, 50].
However, their role under physiological or pathological
conditions is not well defined, although several reports
support the idea that controlled hemichannel opening
allows autocrine/paracrine cell communication. For example,
it has been demonstrated that hemichannels are involved in
the release of signaling molecules such as ATP [54],
glutamate [58], NAD+ [10], and prostaglandin E2 [12], as
well as in the uptake of glucose [46]. In pathological
conditions such as inhibition of metabolism, hemichannels
contribute to cell damage because their opening induces or
accelerates cell death due to loss of metabolites and ion
gradients, and Ca2+ entry [5, 50, 51, 55].

Lacking a vascular system, lens fibers use GJC as a
nutritional and excretory pathway, where the flows of ions,
water, and metabolites between the cells are determined by
their chemical or electrochemical gradients [23, 38]. At least
three connexin isoforms are expressed in the lens: Cx43 [6],
Cx46 [45], and Cx50 [32], and it has been recently proposed
that Cx46 and Cx50 hemichannels play a role in Na+ and
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Ca2+ influx in lens fibers [16]. The importance of connexins
in cataract formation is well documented, with Cx46- and
Cx50-knockout mice developing cataracts at early ages,
suggesting that connexin function is essential to maintain
lens transparency [22, 43]. Increased levels of unsaturated
fatty acids in the lens have been shown to induce and/or
accelerate the development of cataracts [27, 33], but the
mechanism of the damage of lens fibers is unknown.
Although generation of radicals and lipid peroxidation
products likely plays a role, they are not sufficient to explain
the cytotoxicity [see 27]. Linoleic acid (LA), an unsaturated
omega-6 fatty acid essential for biosynthesis of arachidonic
acid [53], induces cataract formation in human [37] and
bovine lens [21, 40]. Although there is no information on
lens connexin isoforms, some isoforms are known to be
sensitive to fatty acids. For example, oleamide-derived
molecules inhibit Cx26 GJC [41].

Since Cx46 is essential for normal lens function, fatty
acids are known to modulate connexins, and LA induces
cataract formation, we decided to test whether LA alters the
function of Cx46, one of the major connexins in the lens. In
two-electrode voltage-clamp studies, we found a biphasic
effect of LA on Cx46 hemichannels: low concentrations
increased Cx46 hemichannel currents, whereas higher
concentrations decreased them. We also observed a direct
correlation between the number of fatty acid double bonds
and the magnitude of the hemichannel current block, and
found that a double bond at C9 is essential for hemichannel
current inhibition. Unexpectedly, LA at low or high
concentration did not affect Cx46 GJC.

Methods

Chemicals

Linoleic acid, palmitic acid, linoleoyl-CoA, and calphostin C
were purchased from Sigma-Aldrich (Schnelldorf, Germany).
Oleic acid, arachidonic acid, 9-thiastearic acid, and 9-
nitrooleate were purchased from Cayman (Ann Arbor,
Michigan, USA), and BAPTA-AM from Calbiochem (San
Diego, California, USA).

Plasmid engineering, cRNA preparation, and injection
into Xenopus laevis oocytes

The plasmid pSP64T-Cx46 containing rat Cx46 DNA was
obtained from Dr. Lisa Ebihara (Rosalind Franklin Univer-
sity) [45]. Oocytes were injected with 12.5 ng of antisense
Cx38 oligonucleotide alone or in combination with 25 ng
of cRNA coding for Cx46. After cRNA injection, oocytes
were maintained in Barth’s solution (88 mM NaCl, 1 mM
KCl, 5 mM CaCl2, 0.8 mM MgCl2, and 10 mM HEPES/

NaOH; pH 7.4, supplemented with 0.1 mg/ml gentamycin
and 20 U/ml penicillin–streptomycin each) for 24–48 h, to
allow for a good expression level. Additional details have
been published [2].

Electrophysiological recordings and calculations

Whole-cell hemichannel currents were measured as described
[47]. Briefly, oocytes were placed in a 1-ml recording
chamber and superfused with ND96 solution (96 mM NaCl,
2 mM KCl, 1.8 mM CaCl2, and 5 mM HEPES/NaOH;
pH 7.4) at room temperature. Glass microelectrodes were
filled with 3 M KCl and had tip resistances of 0.5–1.5 MΩ
when immersed in ND96. For data acquisition and analysis,
we used a voltage-clamp amplifier (OC-725C, Warner
Instruments, Hamden, CT) with pCLAMP 10 and a Digidata
1440A A/D Board (Molecular Devices, Foster City, CA).
Currents were measured following 15-s rectangular voltage
pulses, ranging from −50 to +60 mV, in 10-mV steps, with a
holding potential of −60 mV and 10-s intervals between
pulses. Current–voltage (I–V) relationships were calculated
from the peak current values. Currents through GJCs were
measured in paired oocytes. Briefly, both cells of the pair
were clamped at −40 mV, and junctional currents were
measured after changing the cell-membrane voltage of one
cell to values between −140 and +60 mV (20-mV steps, 15-s
intervals between pulses), while holding constant the voltage
of the other cell (used as reference). The current supplied to
the cell clamped at −40 mV is equal in amplitude, but
opposite in sign, to the transjunctional current. To evaluate
the effects of fatty acids, 500 μl of lipids dissolved in ND96
was carefully added to the 1-ml recording chamber, to final
concentrations ranging from 0.1 to 1,000 μM. Unless
otherwise indicated, the recordings were performed after
5 min of incubation with the fatty acids

Statistical analysis

Results are expressed as means ± SEM, and n refers to the
number of independent experiments. For statistical analysis,
each treatment was compared to its respective control, and
significance was determined using a one-way ANOVA or
paired Student’s t test, as appropriate. Differences were
considered significant at P<0.05.

Results

Linoleic acid affects Cx46 hemichannel currents

As previously described [47, 48], membrane depolarization
of oocytes expressing rat Cx46 hemichannels induces slow
outward currents that do not show inactivation (Fig. 1a).
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The maximum current at +60 mVwas 5.5±0.3 μA (P<0.001,
n=10). Upon returning to the holding potential of −60 mV,
small tail currents were observed (Fig. 1a). Addition of LA
to the bath solution produced a biphasic response. At 0.1 μM
LA, the currents increased ∼15% (Fig. 1d), whereas at
concentrations equal to or greater than 100 μM LA, both
outward and tail currents were significantly reduced
(Fig. 1b). With 100 μM LA, the current was reduced
by ∼40% (Fig. 1e), with >90% of the inhibition within 2 min
of exposure (not shown). The inhibitory effect of LA was
sustained for at least 30 min (Fig. 2a). To study the
reversibility of the effect, we exposed oocytes for 5 min to

100 μM LA and then washed them for 5 min with ND96
without LA. The current, reduced 45% by LA, recovered
to ∼90% of the control value after washing (Fig. 2b). In four
of the 12 experiments, the hemichannel current after wash
actually increased to values similar to those elicited by
0.1 μM LA (not shown). The simplest explanation for this
phenomenon and the dose–response effect in Fig. 1e is that
LA has at least two mechanisms of action, one with higher
affinity (that increases hemichannel currents) and other with
lower affinity (that decreases hemichannel currents). Fits to
the Boltzmann equation of the current data before and after
0.1 or 100 μM LA did not show changes in the voltage

Fig. 1 Cx46 hemichannels are inhibited by linoleic acid. a Repre-
sentative whole-cell current records from Xenopus oocytes injected
with Cx46 cRNA under control conditions. Oocytes were depolarized
from −60 to +60 mV in steps of 10 mV for 15 s. At the end of each
depolarizing step, the membrane was clamped to −60 mV for
additional 10 s. b Same as a but after a 5-min exposure to 100 μM
linoleic acid (LA). c Average effect of 100 μM LA (n=10). d Average
effect of 0.1 μM LA (n=10). Currents were normalized to that under

control conditions, at +60 mV, in the absence of LA. The symbols **
and *** correspond to P<0.01 and P<0.001 compared to the
corresponding control values. e LA concentration dependence of
Cx46 hemichannel currents. Results from ten oocytes were obtained at
+60 mV and were normalized as described for c. The symbols *, **,
and *** correspond to P<0.05, P<0.01, and P<0.001, respectively,
compared to control condition, in the absence of LA. Average data in
c–e are means ± SEM
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dependency of Cx46 hemichannels, suggesting that LA
modifies the open probability and/or the hemichannel
conductance. In summary, LA has a biphasic effect, with a
current increase at lower concentration and a decrease at
higher concentrations. The inhibitory effect is complete in
approximately 2 min and is reversible.

The inhibitory LA effect does not depend on an increase
in intracellular free-[Ca2+] or PKC-mediated phosphorylation

Since LA can increase intracellular [Ca2+] [17] and also
activate protein kinase C [31], we tested the effects of the
Ca2+ chelator BAPTA-AM (100 μM) and the PKC inhibitor

calphostin C (1 μM) on the LA effect. Oocytes were pre-
incubated for 1 h with one of these agents, briefly washed,
exposed to 100 μM LA for 5 min, and then Cx46
hemichannel currents were recorded. Neither BAPTA-AM
nor calphostin C by themselves affected Cx46 hemichannel
currents (data not shown, n=6), nor reduced the inhibitory
effect of 100 μM LA (Fig. 3). If anything, the LA effect
was increased at the more positive clamping voltages.
We did not examine further the increase in the response
to LA, but one possibility is that BAPTA and calphostin
C block the stimulatory effect elicited by lower LA
concentrations (see Fig. 1, panels d and e). Nevertheless,
the data strongly suggest that intracellular [Ca2+] or PKC-

Fig. 2 The linoleic acid effect is sustained and reversible. a Rapid and
stable current block by 100 μM LA. Oocytes were exposed to 100 μM
LA for 5, 15, or 30 min, and hemichannel currents were measured.
Data were normalized and expressed as described in the legend to
Fig. 1c. The solid lines are the fits of the Boltzmann equation to the
data (n=3 each). b Reversibility of the inhibition by LA. Oocytes

expressing Cx46 hemichannels (n=12) were exposed to LA for 5 min
(100 μM LA), and hemichannel currents were recorded. Currents were
measured again after washing without LA for 5 min (Wash). Currents
were normalized to control values. A P<0.001 compared to control is
denoted by **

Fig. 3 The effect of linoleic acid is not due to PKC- or Ca2+-activated
pathways. a Response to LA in oocytes incubated with 100 μM
BAPTA-AM for 1 h. Immediately after removing the Ca2+ chelator,
the response to a 5-min exposure to 100 μM LA was recorded and
compared to control data from oocytes not treated with BAPTA-AM.

b Response to 100 μM LA in oocytes incubated with 1 μM calphostin
C (Calphos) for 1 h. Immediately after removing the PKC blocker, the
response to a 5-min exposure to 100 μM LA was recorded and
compared to control data from oocytes not treated with calphostin C.
See legend to Fig. 1 for additional details
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mediated phosphorylation is not necessary for the LA
inhibitory effect.

Unsaturated fatty acids other than linoleic acid also inhibit
Cx46 hemichannels

Oleamide and certain derivatives need specific chemical
features, i.e., number and positions of double bonds, to
affect GJC expressed in rat astrocytes [7]. Therefore, we
tested the effects of fatty acids with different number of
double bonds on Cx46 hemichannel currents. We used
100 μM of each fatty acid and compared their effects to that
of LA (18 carbons, two double bonds) at the same
concentration. The choice of 100 μM is based on concen-
trations of free C18:2 fatty acids of 50–100 μM reported in
human plasma [20, 28, 30]. The best Cx46 hemichannel
inhibitor was arachidonic acid (AA) which is a polyunsatu-
rated fatty acid with four double bonds and 20 carbons. The
current reduction with AA was >70% (Fig. 4a). Oleic acid
(OA), with one double bond and 18 carbons, reduced the
Cx46 current by 20% (Fig. 4a). Palmitic acid (PA), with 16
carbons and no double bonds, had no effect on the current
(Fig. 4a). These results suggest that the inhibition by fatty
acids depends on the presence of double bonds and seems to
be proportional to the degree of unsaturation.

A common characteristic between OA, LA, and AA is
that all of them have a double bond at position 9, which
seems to be important in the GJC inhibition by oleamide
[7]. To test the importance of the double bond at position 9,
we determined the effects of 100 μM of 9-thiastearic acid
(9-Th, C17H34O2S) and 9-nitrooleate (9-NO, C18H33NO4).
The former has a sulfur atom at position 9, and the latter
has a NO2 at position 9, with the double bond not fully
hydrogenated. The Cx46 hemichannel current was not
affected by 5-min incubation with either of these fatty

acids (Fig. 4b).These results suggest that an unblocked
double bond at carbon 9 is essential for the effect of fatty
acids on Cx46 hemichannels.

Impermeable LA has no effects on hemichannel currents

Fatty acids are present in the inner and outer leaflets of the
membrane bilayer because of fast flip-flop of the protonated
species [29]. To test whether LA incorporation into the
membrane inner leaflet is necessary for the fatty acid
inhibitory effect, we studied the hemichannel response to
LA attached to coenzyme A (LA-CoA, MW 1,029). LA-
CoA is inserted in the outer leaflet of the plasma
membrane, but as other CoA-linked fatty acids, it is not
expected to flip to the internal monolayer [9]. The addition
of 100 μM LA-CoA to the bath solution for 5 min had no
effect on Cx46 hemichannel currents (Fig. 5a). However,
when LA-CoAwas microinjected into the oocytes to a final
estimated concentration of ca. 250 μM, it did not decrease,
but increased Cx46 hemichannel currents (Fig. 5b). In
contrast, a decrease was observed when LA was micro-
injected to reach ca. 250 μM (Fig. 5b).

LA does not affect Cx46 GJC currents

The data presented earlier showed that LA at 0.1 μM activates
and at 100 μM inhibits Cx46 hemichannel currents. Here, we
tested the effects of both concentrations on GJC currents in
paired oocytes expressing Cx46. Under control conditions,
Cx46 GJC exhibit currents of about 300 nA (283±63 nA at
Vj −100 mV, and 361±36 nA at Vj ±100 mV), with a clear
relaxation at Vj over 80 mV (Fig. 6a). A 5-min exposure to
0.1 or 100 μM LA did not affect the GJC currents (data
at +60 mV are shown in Fig. 6b). These results indicate that
LA, at the same concentration and exposure time that affects

Fig. 4 Inhibition of Cx46 hemichannel currents by other unsaturated
fatty acids. a Dependence of the inhibitory effect on the number of
unsaturated bonds. The effects of exposure to palmitic acid (PA, n=5),
oleic acid (OA, n=5), linoleic acid (LA, n=6), or arachidonic acid (AA,
n=6) for 5 min at 100 μM were determined. Protocol as described for
Fig. 1d. Data are presented as means ± SEM. The labeling of the bars
shows, for each fatty acid, the number of carbons followed by the

number of double bonds; e.g., AA 20:4 for arachidonic acid, with 20
carbons and four double bonds. b Importance of the double bond at
position 9. The experimental protocol was identical to that in a, but
the fatty acids used were 9-thiastearic acid (9-Th) and 9-nitrooleate (9-
NO). No statistically significant effects on the Cx46 hemichannel
current were detected (n=7 for each compound). c Chemical structures
of 9-thiastearic acid and 9-nitrooleate
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hemichannel currents, does not alter the electrical properties
of GJC.

Discussion

Mice expressing certain Cx46 mutants [44] and a Cx46
knockout [22] develop cataracts, clearly pointing to an
essential role of Cx46 in maintaining lens transparency.
Cataracts are frequent in diabetes [8, 56], and their incidence
increases with age [34]; however, few studies have correlated
cataract formation with potential alterations in Cx46 function
induced by aging or diabetes. The studies available focused
mostly on Cx46 modifications due to increases in free
radicals [4, 47] and changes in phosphorylation state [19],
but there are no studies on the effects of fatty acids on lens
connexins, even though high concentrations of unsaturated
fatty acids are toxic to human lens epithelial cells [27, 37]. In
the present studies, we show the effect of physiological
levels of unsaturated fatty acids on Cx46 hemichannels and
GJCs. We focused our work on LA because it is present at
the plasma membrane of lens epithelial cells and elevations
of its concentration in the lens produce or accelerate cataract
formation [37]. LA had a biphasic effect, increasing Cx46-
hemichannel currents at low concentrations and decreasing
the currents at higher concentrations. This is consistent with
a high-affinity stimulatory effect and a low-affinity inhibitory
effect. Dual effects of arachidonic acid on plasma-membrane
Ca2+-ATPase [42] and of oleic acid on gap-junction coupling
in A7r5 cells [25] have also been reported.

In order to investigate the mechanism of action of LA,
we evaluated the roles of increases in intracellular free-[Ca2
+] and stimulation of PKC, two known responses to LA in

other systems [17, 31]. We found no involvement of either
signaling pathway in the hemichannel inhibitory response
to LA. Modulation of BKCa2+ channels [13], voltage-gated
K+ channels [18], TRP channels [39], and voltage-gated

Fig. 5 Microinjection of linoleic acid-CoA increases Cx46 hemichannel
currents. a Current–voltage relationship of Cx46 hemichannel currents
under control conditions and after a 5-min exposure to 100 μM linoleic
acid attached to coenzyme A (LA-CoA) or LA alone added to the
extracellular solution (n=8 for each group). b Current–voltage

relationship of hemichannel currents under control conditions and
5 min after microinjection of LA-CoA (n=15) or LA (n=14) to reach
final concentrations of ca. 250 μM. Intracellular concentrations were
estimated assuming a 1-μl oocyte volume. Data are presented as means ±
SEM of currents normalized to the control value at +60 mV

Fig. 6 Linoleic acid does not affect GJC currents. a Representative
transjunctional current records from paired oocytes under control
conditions. Both cells of the pair were clamped at −40 mV, and
junctional currents were measured after changing the cell-membrane
voltage of one cell to values between −140 and +60 mV, in 20-mV
steps. b Lack of effect of LA on transjunctional conductance. GJC
currents measured at +60 mV in the presence of 0.1 or 100 μM LA
were normalized to the current at +60 mV under control conditions.
No differences were observed when 0.1 μM or 100 μM LAwere used.
Data are means ± SEM (n=6 for each concentration used)
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Ca2+ channels [49] by fatty acids has been reported, and in
most cases, it has been suggested that there is a direct
interaction between lipid and ion channel [14, 15, 49]. For
example, arachidonic acid appears to bind to Thr250 and
Val275, in the pore of Ca2+-activated K+ channels [24].

Polyunsaturated fatty acids increase BK channel activity
by shifting the voltage dependence of the open probability
[15]. In this study, the magnitudes of the effects of OA, LA,
and AA were in the same order as our inhibitory results on
Cx46 hemichannels. Cis-unsaturated fatty acids disorder the
bilayer interior and order the head-group region [31], and
therefore, the effects on membrane proteins could be
mediated by changes in the biophysical properties of the
phospholipid membrane. Several facts argue against this
interpretation of our results. In a study using 100 μM
concentrations, the oil/water partition coefficients were PA >
OA > LA > AA [1], i.e., the opposite sequence to their
inhibition of hemichannel conductance. In addition, in the
BK channel study quoted above [15], there was no
correlation between membrane fluidity and BK channel
activation in response to the fatty acids. In sum, our results
do not support an effect of LA and other unsaturated fatty
acids mediated by changes in the properties of the plasma
membrane. Nevertheless, additional experiments will be
needed to determine whether the effects of fatty acids on
Cx46 are due to direct binding to the hemichannels or are
mediated by more complex signaling mechanisms, as
suggested by the LA-CoA results discussed below. In
addition, since Cx46 and Cx50 are the main lens connexin
[35] and they form heteromeric hemichannels [26], further
studies will be needed to determine whether hemichannels
containing Cx50 are also affected by unsaturated fatty acids.

The absence of response to extracellular LA-CoA, not
expected to flip across to the internal monolayer and
therefore not to cross lipid bilayers [9], suggests that fatty
acids need to access the inner leaflet of the plasma
membrane and/or enter the intracellular compartment to
affect hemichannels. Since the intracellular injection of
sufficient LA-CoA to reach inhibitory concentrations
produces an increase in Cx46 hemichannel currents, it is
obvious that the mechanisms of stimulation and inhibition
by LA are distinct. The current-activation site is accessible
from the intracellular compartment to both LA and LA-
CoA, whereas the inhibitory site is only accessible to LA,
suggesting that it is located in a region of the hemichannel
pore inaccessible to LA-CoA or that the signaling mecha-
nism involved requires crossing of LA through an organelle
membrane. Understanding of the complex mechanisms of the
fatty acid effects on hemichannels will require additional
studies.

Hemichannels are affected by changes in membrane
phospholipid composition [36]. GJCs formed by Cx26 or
Cx32 associate preferentially with certain phospholipids;

phosphatidylcholine does not associate with Cx26 hemi-
channels, whereas phosphatidylserine does not associate
with Cx32 hemichannels [11, 36]. In contrast, phosphati-
dylcholine and phosphatidyl serine are associated with both
isoforms in junctional plaques [36]. The concept of specific
lipid–connexin interaction is also supported by Boger and
co-workers [7], who found that molecules derived from the
fatty acid primary amide oleamide affect GJCs when they
contain 16–24 carbon atoms, a hydrophobic methyl
terminus, a polarized carboxy-terminal and a cis double
bond at position 9. In agreement with these observations,
our results with fatty acids containing varied number of
double bonds, with and without an unsaturated cis double
bond at position 9, support the idea that the inhibitory effect
of the fatty acids requires the unsaturated cis double bond at
position 9 and is increased by the degree of unsaturation.
As mentioned above, some phospholipids interact differen-
tially with hemichannel or GJCs formed by Cx26 and Cx32
[36]. Our results showing that LA affects hemichannels, but
not the GJCs formed by Cx46, extend previous studies to a
lens connexin and show differences in functional responses
between GJCs and hemichannels. We have not determined
whether the selective effect on hemichannels vs. GJCs is
due to differences in affinity for LA of hemichannels and
GJCs. However, since LA is present on both leaflets of the
plasma membrane, the absence of effect on GJCs may be
due to structural differences between hemichannels and
GJCs.

Pathophysiological significance

Unsaturated fatty acids modulate a wide range of cellular
processes [52], and in the lens they induce or accelerate
cataract formation by unknown mechanisms [21, 27, 33,
37, 40]. The cytotoxic effects of fatty acids on lens fibers
depend on unsaturated fatty acid uptake by the cells and
increase with the fatty acid-to-albumin ratio [27, 57]. In
aqueous humor, the concentration of albumin is very low
compared to that in plasma [27], and increases in the fatty
acid-to-albumin ratio occur in a number of conditions
associated with cataracts, including diabetes, lipid disorders,
nephritic syndrome, and liver diseases [see 27]. Under these
conditions, unsaturated fatty acid damage of the lens fibers
can occur, particularly in the elderly, where there is a
significant loss of the blood-aqueous humor barrier [see 27].

The block of Cx46 hemichannel currents by LA and
other unsaturated fatty acids at concentrations found in the
lens, without affecting Cx46 GJCs, may contribute to the
induction of cataracts by: (a) reducing the uptake of
physiological molecules from the extracellular space, as
has been proposed for astrocytes [46], (b) reducing the
release of signaling molecules, as it has been shown in
many cell types [50], and/or (c) diminishing cell-to-cell
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communication. It has been proposed that the activity of
Cx46 hemichannels mediates GJC formation [3], and
therefore, reduced hemichannel activity may decrease the
number of GJCs.
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