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Hydrological models are simplified representations of natural processes and subject to errors. Uncertainty
bounds are a commonly used way to assess the impact of an input or model architecture uncertainty in
model outputs. Different sets of parameters could have equally robust goodness-of-fit indicators, which
is known as Equifinality. We assessed the outputs from a lumped conceptual hydrological model to an
agricultural watershed in central Chile under strong interannual variability (coefficient of variability of
25%) by using the Equifinality concept and uncertainty bounds. The simulation period ran from January
1999 to December 2006. Equifinality and uncertainty bounds from GLUE methodology (Generalized
Likelihood Uncertainty Estimation) were used to identify parameter sets as potential representations of
the system. The aim of this paper is to exploit the use of uncertainty bounds to differentiate behavioural
parameter sets in a simple hydrological model. Then, we analyze the presence of equifinality in order to
improve the identification of relevant hydrological processes. The water balance model for Chillan River
exhibits, at a first stage, equifinality. However, it was possible to narrow the range for the parameters and
eventually identify a set of parameters representing the behaviour of the watershed (a behavioural model)
in agreement with observational and soft data (calculation of areal precipitation over the watershed
using an isohyetal map). The mean width of the uncertainty bound around the predicted runoff for
the simulation period decreased from 50 to 20 m3s−1 after fixing the parameter controlling the areal
precipitation over the watershed. This decrement is equivalent to decreasing the ratio between simulated
and observed discharge from 5.2 to 2.5. Despite the criticisms against the GLUE methodology, such as the
lack of statistical formality, it is identified as a useful tool assisting the modeller with the identification
of critical parameters.

1. Introduction

Hydrological models are simplified representations
of natural processes, which are constituted by
input variables; a processing box that mimics

hydrological processes through a set of equations
aimed at matching the observed and simulated
values by a set of parameters and output variables.
However, the incompleteness of knowledge about
the state or process being modelled is defined as
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uncertainty (Caddy and Mahon 1995). As noted
by Brazier et al. (2000), estimating uncertainty
is not just a way to look for weaknesses in the
model, it is a way to improve the model. Therefore,
uncertainty should be estimated by modellers and
communicated to the end-users.

Different sets of parameter combinations may
generate acceptable outputs when comparing the
measured data against simulated data; alter-
natively, some sets of parameters could have
equally strong goodness-of-fit indicators. This non-
uniqueness in representing a system is called equi-
finality (Beven and Freer 2001; Beven 2006).
The Generalized Likelihood Uncertainty Estima-
tion (GLUE) (Beven and Binley 1992) is a method-
ology to estimate uncertainty under real non-ideal
applications (high complexity and/or high uncer-
tainties) (Beven and Freer 2001; Beven et al. 2007;
Vrugt et al. 2009). The main ideas behind GLUE
are (Beven 2001): (1) good or poor model outputs
are a function of the whole set of parameters, not
of individual parameters, and (2) models having
robust goodness-of-fit indicators have higher values
of likelihood, which are indicative that the model,
defined by a set of parameters, is correctly rep-
resenting the system. Thus, goodness-of-fit indica-
tors are less formal or informal likelihood measures
because they do not include a priori the statistical
distribution of the input parameters.

The equifinality concept could be considered
as a starting hypothesis (to be proven), and the
uncertainty bounds could be considered as a proxy
for goodness-of-fit (because the bands are calcu-
lated from intensive Monte Carlo model realiza-
tions) in order to identify a single parameter set
or a group of parameter sets with a given model
structure as potential representations of the system
(Wagener and Kollat 2007; Muñoz 2011). Thus,
analysing changes in the uncertainty bounds allows
the assessment of different sets of parameters.

The objective of this paper is to estimate the
uncertainty in a simple hydrological model and
exploit the use of uncertainty bounds. Then, we
analyze the presence of equifinality in order to
improve the identification of relevant hydrological
processes.

2. Materials and methods

2.1 The monthly water balance model

The lack of stream flow data in many Chilean
watersheds has made necessary the use of hydro-
logical models for planning and design of water
resources infrastructure. The first hydrological
model used in Chile was the Brown, Ferrer y Ayala
model (thereafter BFA model; Ferrer et al. 1973).

This model has been widely used to estimate
monthly stream flows in pluvial watersheds (e.g.,
Muñoz et al. 2011), employing monthly rainfall
and evaporation as inputs. The BFA model has
been used in simulating, for example, summer
(dry season) water availability to assess the feasi-
bility of irrigation projects. Later, water balance
models have been developed from the BFA, like
the MAGIC model used by the Chilean Water
Authority (Zambrano et al. 2005).

The BFA model (figure 1) is a lumped model
that considers a watershed as a double storage sys-
tem: upper soil storage (SS) (water storage in the
soil and runoff generation) and groundwater stor-
age (GS). The GS accepts the overflows from the
SS, and its overflow flows into the river generat-
ing the baseflow (ES) in the watershed. The input
variables are the monthly rainfall (PM) and the
monthly potential evapotranspiration (ETP), both
acting over SS. Actual evapotranspiration (ER)
is estimated using potential evapotranspiration
values and available water stored in the soil. The
only output is the total runoff (EST) at the water-
shed’s outlet as the sum of both the direct runoff
(EI) and ES.

The parameters of the model are described in
table 1 (Muñoz et al. 2014). All parameters have
physical meaning, but not all of them have a well-
defined physical range. For example, Hmax, Cmax,
D, P lim and PORC are related to physical features
of the soils in the watershed, integrating in one sin-
gle value both the spatial and temporal variability,
but are not necessarily a mean value for the water-
shed. In table 1, H1 corresponds to the initial value
requiring iteration during each time step to achieve
the closure of the water balance.

Parameters A and B modify the available records
of rainfall and evaporation (e.g., pan evaporation)
to represent the watershed values (including, for

Figure 1. The BFA model: SS is the surface storage and GS
is the underground storage. See text and table 1 for details.
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Table 1. Parameters of the BFA model: Values in parenthesis in the first column are the range of variation
of the parameters used in the Rio Chillan model; values from Ferrer et al. (1973) and data collected by the
authors.

Parameter Description Variables

A (0.8–2.5) Adjusts the station rainfall data to represent Pt = A · PMt

the watershed rainfall

B (0.6–1.0) Adjusts the station evaporation data to ETPt = B · EMt

represent the watershed evapotranspiration ERt = ERt(H1, ETPt,Hcrit)

Hmax (100–500 mm) Maximum capacity of the soil to retain water

Cmax (0.2–0.6) Maximum runoff generation (EI) under EI = Cmax · H
(1)
t +Ht−1

2Hmax
· Pt

saturated conditions H1 = Ht−1 + Pt − EIt − PPDt

D (0.1–0.6) Percentage of rainfall transformed into deep PPDt = D · (Pt − Plim)

percolation (PPD)

P lim (5–1000 mm) Rainfall threshold over there is deep percolation

PORC (20–60) Fraction of Hmax that defines the soil water Hcrit = PORC · Hmax
100

content restricting the evaporation processes

Ck (0.2–0.9) Constant value regulating the releases ESt ESt = Ck · Vt
from the linear GS

instance, the orographic effect), ensuring the long-
term water balance in the watershed. As in the
Stanford Model (see Crawford and Burges 2004), A
is a scaling factor adjusting the total rainfall over
the watershed, RW, to the record from a single rain
gauge, RS, as RW=A·RS (Gupta et al. 2005). If
an isohyet (or evapotranspiration) map or more
than a single rain gauge are available, it is possible
to estimate a priori A (or B), following any proce-
dure to calculate areal precipitation (Chow et al.
2005).

2.2 A model for the Rio Chillan Watershed

The Rı́o Chillán (Chillan River) is a 757 km2 water-
shed located in the Central Valley (CV, 33◦–38◦S).
The CV is a highly productive agricultural area
that depends heavily upon surface and ground-
water supplies from upper Andean watersheds. In
turn, water availability for multiple users depends
on precipitation and temperature regimes, which
are highly variable in both time and space due to
ENSO events (Montecinos and Aceituno 2003) and
the orographic effect of the Andes. Climate in the
CV is Mediterranean – ca. 80% of precipitation
occurs in winter (May–July) and, in contrast,
during the summer months (September–March)
precipitation is <10% of annual precipitation.
Summer is also the irrigation season, so ES is
essential for agriculture.

The headwaters of Chillan River are located
at the piedmont in the Andes Mountains, flowing
north–west through the Central Valley, reach-
ing the Ñuble River, close to Chillán city. Part
of the streamflow comes from snowmelt, but its
magnitude is negligible (Toro 2009). Indeed, the

hydrological behaviour can be considered as plu-
vial: high streamflow in the rainy season (June–
July) and low flows from November to May
(figure 2). The Chillan River feeds an extensive irri-
gation channel network from October (discharge at
the abstraction 16 m3 s−1) to April (discharge at
the abstraction 6 m3 s−1) (Toro 2009).

Stream flow data corresponds to official records
for gauging stations Esperanza and Confluencia
(figure 2, limnimetric stations managed by the
Chilean Water Authority). The observed discharge
time series used to calibrate the model was monthly
mean values at the Confluencia gauging station
plus the total discharge withdrawn by the irriga-
tion channels (also supplied by the Chilean Water
Authority). Monthly rainfall (automatic tipping
bucket rain gauge) and monthly class-A pan evap-
oration were obtained from the Agrometeorological
Station (Estación Agrometeorológica) at the Uni-
versidad de Concepción, Campus Chillán (36.57◦S,
76.1◦W; 144 masl). Both records span over the
period January 1999–January 2006. As a result
of the short length of the available time series
(85 values), parameters and uncertainty bounds
were obtained using the entire time series for
calibration.

In the case of Rı́o Chillán, we had access to a
single meteorological station. Thus, for our first
run we varied all parameters after which we con-
trasted GLUE-derived values (dotty plots, a pos-
teriori distributions and uncertainty bands) with
areal precipitation values using a hysoyetical map.
It is important to note that the hysoyetical maps
were derived 30 years ago and show a static picture
of precipitation variability and so must be used
carefully.
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Figure 2. Upper panel: Monthly values for rainfall and pan evaporation in Chillan, and streamflow at Confluencia gauging
station. Lower panel: watershed location and gauging stations, Esperanza (435 masl; drainage area 224 km2) and Confluencia

(70 masl.; drainage area 674 km2).

2.3 Estimating uncertainty bands

The most common approach to estimate the out-
put uncertainty is to analyse the error propagation
(Caddy and Mahon 1995). For instance, for a fixed
model structure and a given parameter set, the
uncertainty in the model output, in probabilistic
terms, can be computed by varying the input
data, in a similar way to a sensitivity analysis.
If the input dataset is considered reliable and if
the model structure is fixed, it is possible to com-
pute the uncertainty associated with a given set of
parameters.

GLUE requires a number of subjective decisions,
so the uncertainty bounds are, in essence, qual-
itative. Also, any effects of model nonlinearity,
co-variation of parameter values, and errors in
model structure, input data or observed vari-
ables are implicitly included (Beven and Freer
2001). The GLUE methodology has been subject to
discussion regarding formal statistical issues (for
details, see Mantovan and Todini 2006; Mantovan
et al. 2007; Beven et al. 2007, 2008), as well as
the influence on uncertainty bands of different

likelihood measures and sampling procedures
(Montanari 2007; Stedinger et al. 2008). However,
formal and informal approaches to estimate uncer-
tainty have shown similar results (Zhang et al.
2006; Vrugt et al. 2009).

The GLUE methodology uses Monte Carlo sim-
ulation to generate a posteriori distribution of
the parameters, as well as confidence limits for the
outputs (Khu and Werner 2003). In each Monte
Carlo simulation, a parameter set is randomly sam-
pled from the parameter space (the distribution of
the parameter can be uniform, normal, or another
model) to run the model. Each model realization
can be defined as behavioural or non-behavioural.
Behavioural models are those with values of one or
more performance measures greater than a thresh-
old defining realistic simulations (Beven 2001).
Then, performance measures are converted to
likelihood by a rescaling procedure. Finally, the
prediction of each behavioural simulation (if a
threshold is defined) is weighted by the likelihood
for that simulation. Cumulative likelihood allows
to construct a posteriori parameter’s distributions,
allowing an insight into the parameter sensitivities
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(Mo et al. 2006) and the ability to define feasible
parameter sets.

The likelihood function must be chosen a priori,
and it is therefore subject to discussion because it
affects the distribution of each model’s realization
(Wagener et al. 2001; Khu and Werner 2003; Beven
2006). A likelihood measure should increase mono-
tonically, above zero, with increasing goodness of
fit. Moreover, the sum of the likelihood values must
be one (Beven 2001). We used as likelihood mea-
sures the Transformed Relative Error (TRD) and
the Nash–Sutcliffe Efficiency (NSE) proposed by
Nash and Sutcliffe (1970):

TRD = 1−
√

1
m

∑m

i=1 (Q
i
obs −Qi

sim)
2

Qobs

(1)

NSE = 1−
∑m

i=1 (Q
i
obs −Qi

sim)
2

∑m

i=1 (Q
i
obs −Qobs)2

(2)

where Qsim is the simulated discharge, Qobs is the
observed discharge at the watershed’s outlet, i is
the ith month, m is the number of data points,
and Qobs is the mean discharge for m points. The
second term in the right hand side of equation (1)
is the classical definition of the relative error as
the mean square error and the mean value of the
observations, so TRD=1 implies a good match
and values ≤ 0 indicate a poor match. The NSE
is an indicator that compares the mean square
error generated by a particular model simula-
tion to the variance of the target output, i.e.,
comparing the variability of the model’s residuals
against the variability of the observed series (for
a review on the use of the NSE, see Schaefli and
Gupta 2007).

The estimation of confidence levels and other
results was conducted using the Monte Carlo Anal-
ysis Toolbox (MCAT Wagener and Kollat 2007)
implemented in MATLAB�. This toolbox is a
powerful tool for the quantitative and qualita-
tive (visual) assessment of hydrological models
(Wagener and Kollat 2007). In MCAT, for each
point in time, a cumulative frequency distribu-
tion is generated using the likelihood values from
equations (1) and (2), and the confidence intervals
are calculated using linear interpolation for 5% and
95% (Wagener and Kollat 2007).

The range of the parameters in the BFA models
are indicated in table 1, considering a priori uni-
form distributions for the Monte Carlo sampling.
A detailed workflow for calculations of the BFA
model can be found in Muñoz et al. (2014). In order
to test the uncertainty associated with parameters
we performed 10,000 model realizations considering

a fixed model structure. The number of runs was
defined after a trial-and-error process with a stop
criterion of R ≥ 0.999 as the correlation between
the upper and lower limits of the bands of uncer-
tainty for two different trials (e.g., comparing the
uncertainty bound for 9000 realizations against
10,000 realizations) (Muñoz et al. 2014).

3. Results and discussion

In terms of likelihood (the closer the value to 1,
the better the model), figure 3 displays the value
of TRD associated with each parameter for each
model realization. Most of the parameters have
similar mapping: higher density of points, uni-
formly distributed, in a horizontal band close to
the upper limit for likelihood (for the 10,000 runs).
This concentration of points shows that it is pos-
sible to find several parameter sets with high like-
lihood (or in other words, with low relative error)
within the predefined range, which is an expres-
sion of equifinality. The exception is the parameter
A where the likelihood values are localized in a
narrow non-horizontal band, showing a maximum
value close to 1.5. Values of the parameter A from
the 1.4–1.8 range strongly decrease the goodness-
of-fit (lower likelihood) showing that the model
is highly sensitive to this parameter, i.e., it is
identifiable.

In order to identify in a better way, the range
of parameter values with higher likelihood, the
GLUE methodology allows us to estimate a poste-
riori the frequency distribution of the parameters
(figure 4). The initial assumption about the
uniform distribution of the parameters is (weakly)
true for most of the parameters. Again, the excep-
tion is the A parameter, which shows a normal-like
distribution, indicating that the most likely value
for this parameters is close to 1.5.

Table 2 shows the best parameter sets considering
TRD, as well as NSE. The highest values of like-
lihood (rectangles in figure 3) for Cmax and Hmax

are 0.6 and 500, respectively, both being close to
the upper limits previously defined (see table 1,
indicating a high capacity to store water in the
soil). Indeed, the low value of P lim = 100 mm and
D = 0.4 suggest that in the watershed the rainfall
threshold for deep percolation is very low but half
of the water available for deep percolation stays
in the SS. On the other hand, a low value of
Ck = 0.3 indicates that the water stored in the soil
is slowly released to the river because Ck linearly
regulates the release of water from the groundwater
storage.

A closer inspection of table 2 leads us to say that
there is equifinality in the model outputs, that is,
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Figure 3. Dotty (scatter) plots for each parameter of the BFA model considering the TRD as likelihood measure. The white
square indicates the best parameter set.

Figure 4. A posteriori probability distribution for each parameter of the BFA model (TRD as likelihood measure).

the listed parameter sets have very similar perfor-
mance indicators but there are also clear differences
between the sets. The main difference is the subset
{P lim, PORC, Ck}. These differences lead to very
similar outputs, therefore the modeller must care-
fully choose the parameter set that is most repre-
sentative of the watershed behaviour, beyond the
match between observed and simulated data. For
instance, in the case study, the subsets {D=0.26,
P lim=36, PORC=26} and {D=0.1, P lim=236,
PORC=56} suggest different internal mechanisms
within the watershed (e.g., groundwater storage

and release of ES, evapotranspiration, ER, under
restrictive conditions, and also less studied pro-
cesses in Andean watershed (like fracture storage).
For example, rainfall is transformed into Deep Per-
colation (PPD) as PPDt = D · (Pt − Plim), so
for a monthly precipitation of 250 mm, the com-
bination {D=0.26, P lim=36} yields a deep per-
colation amount of 55.64, favouring groundwater
storage, while the combination {D=0.1, P lim=236}
attains 1.4 mm of deep percolation favouring direct
runoff. Low values of PORC imply that evapo-
transpiration has a lower limit for vegetation stress.
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Table 2. Best parameter sets of the BFA model considering the transformed relative error (TRD)
and the Nash–Sutcliffe Efficiency (NSE) as objective functions.

A B Cmax Hmax D P lim PORC Ck RD NSE

TRD

1.75 0.8 0.59 494 0.4 80 52 0.23 0.7 0.91

1.67 0.68 0.47 450 0.51 237 56 0.27 0.7 0.91

1.63 0.75 0.47 410 0.26 36 42 0.38 0.7 0.9

1.72 0.61 0.49 497 0.15 584 45 0.35 0.7 0.9

1.74 0.93 0.49 421 0.47 130 48 0.26 0.69 0.9

NSE

1.75 0.8 0.59 494 0.4 80 52 0.23 0.7 0.91

1.89 0.61 0.48 485 0.27 44 47 0.21 0.66 0.91

1.82 0.67 0.48 477 0.29 154 42 0.22 0.69 0.91

1.74 0.67 0.49 404 0.36 55 30 0.23 0.69 0.91

1.55 0.64 0.52 479 0.59 469 54 0.39 0.68 0.91

The output’s uncertainty is shown in figure 5(a)
(without setting a threshold for behavioural models,
as we kept all model runs). The output uncertainty
band brackets the observations, being wider in the
wet season, indicating that the models fail in repro-
ducing high flows, but become more reliable in the
low flow season. Thus, the model is less uncertain
when there is no rainfall entering the system, sug-
gesting that the current structure of the model is
not the most optimal for accounting stream flows
in the wet season, or for ‘fast’ response. It is also
worth noting that the parameters of the model are
constant for the whole watershed and the complete
simulation period, making it difficult to capture
the spatial and temporal changes in the watershed.
One approach to overcome this shortcoming is to
change the model structure to allow changes in the
parameter values depending on the rainfall.

The parameter A strongly affects the model’s
performance because the only water input into the
watershed considered by the BFA model is the
rainfall. Indeed in the strictest sense, A is not
a parameter but an input value dependent upon
the characteristics of the watershed. Based on the
available isohyetal map for the area (Toro 2009),
we calculated the areal precipitation as described
in Chow et al. (2005) and then calculated the ratio
between areal precipitation and the precipitation
for the weather station. This calculation yields a
value of 1.6, i.e., the mean precipitation in the
watershed is 1.6 times the monthly precipitation
at Chillán. The likelihood was greatest around the
same value (figure 3), so the parameter A was fixed
to 1.6. In order to show the iterative processes
of model selection, we carried out 10,000 Monte
Carlo simulations considering only seven model
parameters.

As expected, after fixing the parameter A,
there is a significant reduction in the uncertainty
(figure 5b). It is worth noting that after fixing A,

the dotty plots, as well as the probability distribu-
tion function for each parameter changed slightly.
As a result we show the uncertainty bounds as an
integration of those changes. Figure 7 compares
the a posteriori distribution of each parameter.
The first run – all parameters varying – made no
assumption regarding parameters A and B, resem-
bling first stages of hydrological modelling. The
parameter A was then fixed, and in a third run,
we also fixed parameter B. As we used pan evapo-
ration, we fixed the value to B = 0.85. This weak
identifiability evidences that the model will adjust
the rest of parameters to attain a long-term water
balance. The rest of the parameters do not show
identifiable ranges (no changes in the a posteri-
ori distribution) due to overparametrization of the
model and parameters’ interdependency (Li et al.
2009; Muñoz et al. 2014). After fixing parame-
ters A and B there is no significant reduction in the
width of the uncertainty band (results not shown).

Thus, by sequentially fixing parameters that
show identifiable ranges (non-uniform a posteriori
probability distributions), dotty plots and uncer-
tainty bands are valuable tools for this task. Indeed,
Muñoz et al. (2014) developed within this concept
a simple method aimed at constraining the equifi-
nal parameters and reducing the uncertainty bands
of model outputs. The model discards equifinal
solutions by inspecting the identifiability plots
(gradient of the cumulative distribution derived
from the a posteriori distribution), and narrowing
the range of each parameter used in Monte Carlo
realizations by inspecting dotty plots.

In order to compare how much uncertainty
decreases after fixing parameter A, we calculated
the width of the uncertainty bounds, ΔCF, as the
difference between upper (95%) and lower (5%)
confidence limits for each simulation step. As seen
in figure 6(a), in both cases, ΔCF increases during
the precipitation season and decreases during the
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(a)

(b)

(c)

Figure 5. Uncertainty band for monthly streamflow simulated using the BFA model for (a). All parameters subject to
Monte Carlo sampling (b) only parameter A=1.60. (c) Comparison between the best realization considering the TRD and
NSE (A fixed). The confidence limits are 95% and 5% for (a) and (b).

(a)

(b)

Figure 6. Width of the uncertainty band, ΔCF, for monthly streamflow simulated using the BFA model considering all
parameters varying and parameter A fixed. (b) Ratio between simulated and observed values considering all parameters
varying and parameter A fixed.

baseflow periods but the magnitude of ΔCF is
lower after fixing parameter A. The mean of ΔCF
for all varying parameters is 50 m3 s−1, while for
parameter A fixed to 1.6, the value is 20 m3s−1.
Figure 7(b) displays the ratio between simulated
(averaged over 10,000 model realizations) and ob-
served discharges for both approaches: after fixing
the parameter A, the maximum value of the ratio
decreases from 5.2 to 2.5. Even though there
is a reduction of the width of the uncertainty band,
a side effect appears. As the band has been narro-
wed, the reliability – the percentage of observations
bracketed by the uncertainty band – decreases.
This result implies that there must be a trade-off
between reliability and uncertainty bands. For the
BFA model, this decrease in uncertainty means

that peak flows are not bracketed, suggesting a
structural failure of the model to capture this
process.

Comparing the best outputs with considera-
tion to TRD and NSE as the objective functions
(figure 5c), the results are similar. However that
may not always be true, depending upon the water-
shed to be modelled. A closer inspection of figure 8
shows that the best 10 parameter sets (A fixed)
perform in a similar way, however between January
2003 and June 2005, there are two clear groups.
The first group, Group F (B≈0.8; P lim≈40 mm;
Ck≈0.3), is a better fit of the observed stream flow
under predominant baseflow conditions (streamflow
after two consecutive years with rainfall below the
average). Low values for P lim imply an increase
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Figure 7. Changes on the a posteriori distribution of parameters for three sequential cases: all parameters varying, A-fixed,
and both A and B fixed.

(a)

(b)

Figure 8. (a) Comparison of observed and simulated values using the best 10 parameter sets; (b) same as (a), but zoomed
from January 2003 to June 2005.

of groundwater recharge as precipitation volumes
greater than P lim mainly travel to the groundwater
storage. On the other hand, low values for Ck
imply a more stable release from the groundwater
storage. Thus, the combination of low values for
both P lim and Ck lead to a higher and more
stable base flow during the dry season. On the
contrary, Group S (B≈0.7; P lim≈90 mm; Ck≈0.4)
is related to less percolation, less evapotranspira-
tion and quicker release of water from the ground-
water storage, leading to a less persistent baseflow,
as well as less discharge. It is worth noting that
Group S produces similarly good results, especially

for some peaks flows. This is indicative of the model’s
inability to reproduce all variations showing the
streamflow data with a single set of parameters.
Values for Group S are in line with the high storage
capacity observed in the basins of volcanic origin
located in central Chile that drain from the Andes
(Muñoz et al. 2014), so we define this parameter
group as the behavioural set.

The BFA model has been used in a wide set of
watersheds, with its structure unchanged. As ‘it is
unlikely that a single model structure provides the
best stream flow simulation from multiple basins
in different climate regions’ (Clark et al. 2008), it
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must be stressed that the results presented here are
valid for a given structure and parameterization of
the model.

In this case study, both performance measures,
TRD and NSE, gave similar results but it is
worth noting that using different indices could
lead to different results (linked to parameter sets).
However, increasing the number of performance
measures does not ensure a better model evalua-
tion (Viola et al. 2009; Xiong et al. 2009). As
discussed elsewhere, goodness-of-fit indices are
intended to assess different parts of the hydro-
graphs (base flow, peaks, recession). Even though
a multi-objective approach is appealing, we use
a 2-objective approach to keep the case study
simple using widely used and easy-to-implement
measures, namely Nash–Sutcliffe Efficiency and
Relative Differences.

Model-related uncertainties are not the only
source of uncertainties (Shirmohammadi et al.
2006). Input parameters and measurement (or the
lack of field measurement) are also sources of uncer-
tainties, as these make the process of model evalu-
ation difficult. GLUE aggregates different sources
of errors (input data, structure, relationships
among parameters), it is therefore difficult to draw
conclusions about unacknowledged errors or uncer-
tainties. As a consequence of the above-mentioned
phenomena, “there is a large difference between a
better fit (to observed data) for a given model and
a better model” (Ebel and Loague 2006, p. 2889).

4. Conclusions

The application of the GLUE methodology demon-
strates that the Monthly Water Balance model
used to represent the monthly discharge at the out-
let of the Rio Chillan watershed exhibits, at a first
stage, equifinality, i.e., different sets of parame-
ters generate acceptable outputs. The outputs are
highly sensitive to the parameters A, Hmax, P lim,
and Ck, representing the water input, the soil and
the groundwater systems. However, it was possi-
ble to narrow the range for the parameters and
eventually identify a set of parameters represent-
ing the behaviour, i.e., a behavioural model, of the
watershed in agreement with observational and soft
data.

In the case study, the BFA model presents a
wider band of uncertainty for the rainfall season,
showing some problems in representing the hydro-
logical processes leading to peak stream flows. The
uncertainty shows a significant reduction after the
parameter A is fixed or with a narrower range
of distribution, considering prior knowledge. We
propose that A values should not be considered
as a parameter (and is therefore not subject to

equifinality), because it could be estimated a priori
or contrasted against rainfall data.

To summarize, we applied GLUE knowing that
it is a good tool for assessing a model in the
early stages of model development instead of a con-
clusive tool. The GLUE methodology is a useful
tool, assisting the modeller with the identification
of critical parameters, as well as with the proper
communication of model uncertainties. The last
decision, however, always lies with the modellers,
who are best placed to identify the best models
and parameters based on their judgment and
knowledge.

Our approach is simple, easy to implement, and
has the potential to be used in the practice of
hydrology.
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