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Abstract

Campylobacter jejuni and Campylobacter coli are the leading cause of human gastroenteri-

tis in the industrialized world and an emerging threat in developing countries. The incidence

of campylobacteriosis in South America is greatly underestimated, mostly due to the lack of

adequate diagnostic methods. Accordingly, there is limited genomic and epidemiological

data from this region. In the present study, we performed a genome-wide analysis of the

genetic diversity, virulence, and antimicrobial resistance of the largest collection of clinical

C. jejuni and C. coli strains from Chile available to date (n = 81), collected in 2017–2019 in

Santiago, Chile. This culture collection accounts for more than one third of the available

genome sequences from South American clinical strains. cgMLST analysis identified high

genetic diversity as well as 13 novel STs and alleles in both C. jejuni and C. coli. Pangenome

and virulome analyses showed a differential distribution of virulence factors, including both

plasmid and chromosomally encoded T6SSs and T4SSs. Resistome analysis predicted

widespread resistance to fluoroquinolones, but low rates of erythromycin resistance. This

study provides valuable genomic and epidemiological data and highlights the need for fur-

ther genomic epidemiology studies in Chile and other South American countries to better

understand molecular epidemiology and antimicrobial resistance of this emerging intestinal

pathogen.
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Author summary

Campylobacter is the leading cause of bacterial gastroenteritis worldwide and an emerging

and neglected pathogen in South America. In this study, we performed an in-depth analy-

sis of the genome sequences of 69 C. jejuni and 12 C. coli clinical strains isolated from

Chile, which account for over a third of the sequences from clinical strains available from

South America. We identified a high genetic diversity among C. jejuni strains and the

unexpected identification of clade 3 C. coli strains, which are infrequently isolated from

humans in other regions of the world. Most strains harbored the virulence factors

described for Campylobacter. While ~40% of strains harbored mutation in the gyrA gene

described to confer fluoroquinolone resistance, very few strains encoded the determinants

linked to macrolide resistance, currently used for the treatment of campylobacteriosis.

Our study contributes to our knowledge of this important foodborne pathogen providing

valuable data from South America.

Introduction

Campylobacteriosis caused by Campylobacter jejuni and Campylobacter coli has emerged as an

important public health problem and is the most common bacterial cause of human gastroen-

teritis worldwide [1,2]. It is usually associated with a self-limiting illness characterized by diar-

rhea, nausea, abdominal cramps and bloody stools [1]. Nevertheless, extraintestinal

manifestations might cause long-term complications such as Miller-Fisher or Guillain-Barré

syndrome [1]. Despite the self-limiting course, certain populations such as children under 5

years of age, elderly patients, and immunocompromised patients might suffer severe infections

and require antimicrobial treatment [3]. In this context, the World Health Organization

(WHO) has included Campylobacter as a high priority pathogen due to the worldwide emer-

gence of strains with high level of fluoroquinolone resistance [4].

In South America, there is limited data available on the prevalence of C. jejuni and C. coli in

comparison to other enteric bacterial pathogens [1,5,6]. In Chile, the National Laboratory Sur-

veillance Program of the Public Health Institute has reported an incidence rate of campylobac-

teriosis of 0.1 to 0.6 cases per 100,000 persons [7]. This is low compared to high-income

countries, where incidence rates can reach two orders of magnitude higher [1]. Nevertheless,

recent reports suggest that the burden of campylobacteriosis in Chile has been greatly underes-

timated due to suboptimal diagnostic protocols [7]. Indeed, a recent report suggests that Cam-
pylobacter spp. is emerging as the second most prevalent bacterial cause of human

gastroenteritis in Chile [8].

Only few reports have analyzed the genetic diversity and antimicrobial resistance profiles of

clinical human strains of Campylobacter in Chile [9–13]. Furthermore, these studies have

either used a limited number of strains [13] or lacked the resolution provided by whole

genome sequence-based typing methods [9–12]. Therefore, larger genomic epidemiology

studies are needed in Chile and more broadly in South America.

We recently made available the whole genome sequences of 69 C. jejuni and 12 C. coli
human clinical strains isolated from patients with an enteric infection visiting Clı́nica Alemana

in Santiago, Chile, during a 2-year period (2017–2019) [14,15]. This represents the largest

genome collection of clinical Campylobacter strains from Chile and one of the few collections

available from South America. In the present study, we performed a genome-wide analysis of

the genetic diversity, virulence potential, and antimicrobial resistance profiles of these strains.

Importantly, we identified a high genetic diversity of both C. jejuni and C. coli strains,
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including 13 novel sequence types (STs) and alleles. Resistome analysis predicted widespread

resistance to fluoroquinolones, but decreased resistance to tetracycline in comparison to the

reported resistance from other regions of the world. In addition, we also describe differential

distribution of virulence factors among strains, including plasmids and chromosomally

encoded Type 6 and Type 4 Secretion Systems (T6SS and T4SS respectively). This work pro-

vides valuable epidemiological and genomic data of the diversity, virulence and resistance pro-

files of this neglected foodborne pathogen.

Methods

Genome data set, sequencing and reannotation

The genome sequence dataset analyzed in this study is listed in S1 Table and includes our

recently published collection of human clinical strains of C. jejuni and C. coli from Chile

[14,15]. We additionally sequenced C. jejuni strain CFSAN096303. This strain was sequenced

as described in [14] using the NextSeq sequencer (Illumina) obtaining an estimated genome

average coverage of 90X. The genome was assembled using the CLC Genomics Workbench

v9.5.2 (Qiagen) following the previously used pipeline [14] and was deposited under accession

number WXZQ01000000. FASTA files of all draft genomes were reordered to the reference

genomes of the C. coli aerotolerant strain OR12 (accID GCF_002024185.1) and C. jejuni strain

NCTC 11168 (accID GCF_000009085.1) using the Mauve Contig Mover (MCM) from the

Mauve package [16]. The ordered genomes were annotated using Prokka [17] with the same

reference files mentioned above and by forcing GenBank compliance. Draft genome sequence

reannotations and sequence FASTA files are available as a supplementary dataset on Zenodo

https://doi.org/10.5281/zenodo.3925206.

Multi-Locus Sequence Typing (MLST) and core genome MLST (cgMLST)

analysis

Genome assemblies were mapped against an MLST scheme based on seven housekeeping

genes [18] and the 1,343-locus cgMLST scheme [19], using RIDOM SeqSphere software (Mün-

ster, Germany) [20]. The following GenBank (GCA) or RefSeq (GCF) genome assemblies were

used as reference genomes: Campylobacter hepaticus HV10 (GCF_001687475.2), Campylobac-
ter upsaliensis DSM 5365 (GCF_000620965.1), Campylobacter lari RM2100 (GCF_000

019205.1), Campylobacter jejuni NCTC 11168 (GCF_000009085.1), C. jejuni doylei 269.97
(GCA_000017485.1), aerotolerant Campylobacter coli OR12 (GCF_002024185.1), Campylo-
bacter coli BIGS0008 (GCA_000314165.1), Campylobacter coli 76339 (GCA_000470055.1), and

Campylobacter coli H055260513 (GCA_001491555.1) were used as reference genomes. Phylo-

genetic comparison of the 81 Campylobacter genome sequences was performed using a neigh-

bor-joining tree based on a distance matrix of the core genomes of all strains. Sequence Types

(STs) and Clonal Complexes (CCs) were determined after automated allele submission to the

Campylobacter PubMLST server [18]. Comparative cgMLST analysis with C. jejuni and C. coli
clinical strains worldwide was performed with genomes available at the NCBI database. Anno-

tations and visualizations were performed using iTOL v.4 [21].

Virulome, resistome and comparative genomic analysis

A local BLAST database was constructed using FASTA files of all sequenced genomes and the

makeblastdb program from BLAST [22], which was screened for the nucleotide sequence of

known pathogenicity genes using BLASTn (version 2.8.1) [22]. A 90% sequence length and

90% identity threshold were used to select positive matches. The FASTA file containing the
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nucleotide sequence of virulence genes screened can be found at https://doi.org/10.5281/

zenodo.3925206. The C257T mutation in gyrA and mutations A2058C and A2059G in the

genes for 23S RNA were searched manually by BLAST and sequences were aligned to the refer-

ence gene from strain Campylobacter jejuni ATCC 33560 using ClustalX [23]. Antimicrobial

resistance genes were screened in each Campylobacter genome using the ABRicate pipeline

[24], using the Resfinder [25], CARD [26], ARG-ANNOT [27] and NCBI ARRGD [28] data-

bases. BLAST-based genome comparisons and visualization of genetic clusters were performed

using EasyFig [29].

Pangenome and plasmid screening analysis

Annotated genome sequences were compared using Roary [30], setting a minimum percent-

age identity of 90% for BLASTp. Pangenome visualization was performed using roary_plots.

py. Additionally, the file gene_presence_absence.csv produced by Roary was analyzed using a

spreadsheet program to find genes that are shared by subgroups of isolates. Venn diagrams

were constructed using the tool available at http://bioinformatics.psb.ugent.be/webtools/

Venn/. Plasmids screening was performed on FASTQ files using PlasmidSeeker [31], based on

the default bacterial plasmid database. The inhouse database of known plasmids from C. coli
or C. jejuni and the output table for the presence/abscence of gene content in the Roary analy-

sis can be found in https://doi.org/10.5281/zenodo.3925206. Pangenome BLAST analysis was

performed using GView (https://server.gview.ca/) [32].

Results

Phylogenetic analysis of clinical Campylobacter strains

To gain insight into the diversity of Chilean clinical C. jejuni and C. coli strains, we performed

a cgMLST analysis using the typing scheme recently developed by Cody et al. [19]. cgMLST

analysis showed high genetic diversity among the 69 C. jejuni strains, as shown by the 14 CCs

and 31 distinct STs identified (Fig 1). Almost 93% (n = 64) of the C. jejuni strains belonged to

a previously described CC for this species. Among our strains, CC-21 was the most common

(37.6%) and diverse (5 distinct STs) (Fig 1 and S1 Table). ST-1359 was the most prevalent ST

of CC-21 (48%) and of all C. jejuni strains in this study (17.4%) (Fig 1 and S1 Table). In addi-

tion to CC-21, we identified high rates of CC-48 (13%) and CC-52 (7.3%). ST-475 from CC-48

was the second most prevalent ST (11.6%) identified (Fig 1).

The cgMLST analysis of the 12 C. coli strains from our collection revealed that 83% (10/12)

of the strains belonged to clade 1, while 17% (2/12) belonged to clade 3 and none to clade 2.

Most clade 1 strains (8/10) belonged to CC-828 and included four previously described STs

(828, 829, 1173, and 1556) and one novel ST (10201). Only one strain from clade 1 belonged to

the usually common CC-1150 (strain CFSAN093253 from ST-10203), and another strain

could not be assigned to any clonal complex (strain CFSAN096322 from ST-10202). Both

clade 3 strains belonged to ST-10204.

A global cgMLST analysis comparing our 81 Campylobacter genomes with other 1631 C.

jejuni and 872 C. coli genomes available from the NCBI database was performed. The strains

of our collections from Central Chile showed great diversity and did not group with any exist-

ing clusters (Fig 2A). The reconstructed phylogenetic trees and associated metadata of clinical

strains from Chile in the global context of C. jejuni and C. coli sequenced strains can be inter-

actively visualized on Microreact at https://microreact.org/project/VbEQsZtQD. Analysis of

the genotype frequencies of clinical Campylobacter strains from Chile in comparison to other

countries, showed a distribution of CCs more similar to countries from North America
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(United States) and Europe (United Kingdom) than from other countries from the region

such as Peru, Brazil and Uruguay (Fig 2B).

Pangenome analysis of Campylobacter strains

To identify the genetic elements that are shared and distinct among the Chilean C. jejuni and

C. coli strains, we performed pangenome analysis of the 81 strains from both species (Fig 3).

The analysis identified a pangenome of 6609 genes for both species and identified the core

genes shared between C. jejuni and C. coli (531 genes) and the core genome of each species

(1300 genes for C. jejuni and 1207 genes for C. coli). Our analysis showed an open pangenome

as the number of genes increases with the addition of new genomes. The core genome

decreased reaching a plateau at approximately 20 genomes (Fig 2C). The number of new and

unique genes identified also reached a plateau after 20 genomes (Fig 2D).

In addition, the analysis was able to identify the differences among the core and accessory

genomes of C. coli strains from clade 1 and clade 3. C. coli strains from clade 1 harbored 340

core genes absent from clade 3 core genes, which in turn, harbored 159 core genes not present

Fig 1. Phylogenetic analysis of clinical C. jejuni and C. coli strains from Chile. Phylogenetic tree is based on cgMLST performed with RIDOM SeqSphere+ and

visualized by iTOL. STs are shown in colored boxes for each strain, and tree branches are color coded to highlight C. jejuni and C. coli strains from clades 1, 2 and 3. ST

and CC frequency distribution of clinical C. jejuni and C. coli strains from this study are detailed in the right panel.

https://doi.org/10.1371/journal.pntd.0009207.g001
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in clade 1 core genes (Fig 3). Further analysis with a higher number of C. coli sequences will be

required in order to better estimate the core and accessory genomes of this specie. The esti-

mated core genome for C. jejuni in our study (1300 genes) was close to the 1343 core genes

identified in the development of the cgMLST scheme of C. jejuni [19] and in agreement with

recent reports [33] (S2 Table). In addition, a significant variation in the accessory genome

between C. jejuni and C. coli strains was identified, confirming the high genetic variability of

Campylobacter. Accessory genes that are common to a particular cluster seem to contribute to

modifications of carbohydrates and flagella as well as antibiotic resistance. There is also a pro-

portion of genomes (around 28%) harboring T4SS and T6SS-related genes (see below).

Genomic analysis of the resistome

To determine the resistome, we performed in silico analysis to identify genes associated with

antimicrobial resistance (Fig 4) by screening each Campylobacter genome by means of the

ABRicate pipeline [24] using the Resfinder, CARD, ARG-ANNOT and NCBI ARRGD data-

bases. We additionally performed sequence alignments to identify point mutations in the gyrA
and 23S rRNA genes. The cmeABC operon was present in all C. jejuni and C. coli strains ana-

lyzed. This operon encodes a common multidrug efflux pump characterized in different Cam-
pylobacter species, which mainly confers resistance to fluoroquinolones and in some cases to

macrolides [34]. Additionally, the point mutation in the quinolone resistance-determining

region (QRDR) of the gyrA gene, leading to the T86I substitution in GyrA, was identified in

53.1% of the strains. This mutation confers high levels of resistance to fluoroquinolones [35].

In contrast, a much lower fraction of the strains harbored resistance markers for other anti-

microbials. The tetO gene, which confers tetracycline resistance in Campylobacter spp, was

Fig 2. Global cgMLST analysis of clinical C. jejuni and C. coli strains. (A) Phylogenetic tree is based on cgMLST performed with RIDOM SeqSphere+ and visualized by

iTOL. Countries of isolation are shown as colored strip and strains from this study are highlighted in red circles. A blue or red color strip highlights the species of each

isolate. (B) Clonal complex frequency of clinical Campylobacter strains deposited in the pubMLST database separated per country of isolation.

https://doi.org/10.1371/journal.pntd.0009207.g002
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found in 22.2% of the strains [36]. Furthermore, only 4.94% of the strains carried the mutation

of the 23S rRNA gene, which is associated to macrolide resistance [37]. The ermB gene was not

detected. Finally, we also found a high proportion of strains (79%) harboring the blaOXA-61

gene among C. jejuni and C. coli strains. This genetic marker is associated with β-lactam resis-

tance and has a high prevalence in Campylobacter strains worldwide [38].

Fig 3. Visualization of the pangenome of the C. jejuni and C. coli strains. Pangenome analysis was performed using Roary. Core and accessory

genomes are highlighted with red and black brackets, respectively. cgMLST phylogenetic tree of Fig 1A is shown on the left. B) The graph shows the

number of genes in the core and pan genomes (continuous and discontinuous lines respectively) as increasing number of genomes are considered in

random order. C) The number of genes unique to a genome (discontinuous line) and new genes not found in previously analyzed strains (continuous

line) as increasing number of genomes are considered in random order. D) A Venn diagram highlighting the number of core genes present in C.

jejuni and C. coli strains from clades 1 and 3 is shown on the right.

https://doi.org/10.1371/journal.pntd.0009207.g003
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Presence and diversity of virulence gene content among Chilean

Campylobacter strains

To determine the virulence gene content of the C. jejuni and C. coli strains, we first assembled

a list of 220 potential virulence genes, including genes described in the Virulence Factor Data-

base [39] and genes reported to contribute to the virulence of Campylobacter in the literature

[40–43]. These genes were grouped into five distinct categories (adhesion and colonization,

invasion, motility, secretion systems and toxins) and were used to screen each of the 81

genomes using BLASTn (Figs 5 and S1, and S3 Table for the full list). Most of the described

factors involved in adhesion and colonization (cadF, racR, jlpA, pdlA, dnaJ, aphC) were preva-

lent among the C. jejuni strains and were not associated with any particular STs (Fig 4, S3

Table).

The genes responsible for the production of the CDT toxin (cdtA, cdtB and cdtC) were also

found in most strains of C. jejuni and in every tested C. coli strain. The cdtA and cdtB genes

were not detected in the C. jejuni strain CFSAN093229. In contrast, the ciaB gene was identi-

fied in 98.7% of the C. jejuni strains (Fig 5). The product of this gene is involved in cecal colo-

nization in chickens and in translocation into host cells in C. jejuni [44,45].

The major differences among C. jejuni strains were observed for genes located at the cps
locus (Cj1413c -Cj1442) involved in capsule polysaccharide synthesis, the LOS locus

(C8J1074-C8J1095) involved in lipooligosaccharide synthesis, a small set of genes in the O-

linked flagellin glycosylation island (Cj1321-Cj1326) and the T6SS and T4SS gene clusters

(Figs 5 and S1, and S3 Table). Additionally, C. coli strains carried most of the genes known to

be associated with invasiveness in C. jejuni, including the iamb, flaC and ciaB genes. Both C.

coli clades also harbored some genes associated with other steps of infection such as the cdt
toxin gene and most of the flagellar biosynthesis and chemiotaxis-related genes described for

C. jejuni (S1 Fig). Its relevance in pathogenicity remains unclear [46].

Distribution of the T6SS and T4SS gene clusters

Our analysis identified the T6SS gene cluster in nine C. jejuni strains and in one C. coli strain

from clade 1 (Fig 5). As shown in S2 Fig, whenever present the genetic structure and the

sequence identity of this cluster was highly conserved among C. jejuni and C. coli strains. For

strains with genomes that were not closed, we were not able to confirm whether the tssI gene is

located within the genetic context of the T6SS cluster, since it was not assembled in the same

contig as the rest of the cluster. The Campylobacter T6SS gene cluster is often encoded within

the CjIE3 conjugative element in the chromosome of C. jejuni [41], but it can also be found in

plasmids [47,48]. Since most of our sequenced strains correspond to draft genome assemblies,

we could not determine whether the T6SSs were plasmid or chromosomally encoded in most

of them. However, we have closed the genomes of 2 of these strains (CFSAN093238 and

CFSAN093227) [15]. In both of them, T6SS was inserted in the chromosomal CjIE3 element,

while in strain CFSAN093246, it was plasmid-encoded. Sequence-based analysis of this plas-

mid showed a high degree of identity with plasmid pMTVDDCj13-2 (Fig 6), which encodes a

complete T6SS gene cluster [48].

Genome analysis identified a T4SS gene cluster in 12 strains of C. jejuni and 1 strain of C.

coli clade 1 (Fig 5). It harbored the 16 core genes and was correctly assembled in individual

Fig 4. Distribution of antimicrobial resistance genes. Binary heatmaps show the presence and absence of antimicrobial resistance

genes. Colored cells represent the presence of genes. cgMLST phylogenetic tree of Fig 1A is shown on the left. Strain names are

color coded to highlight phylogenetic groups: C. jejuni strains (light green), C. coli clade 1 strains (orange) and C. coli clade 3 strains

(magenta).

https://doi.org/10.1371/journal.pntd.0009207.g004
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contigs in 11 strains, which allowed the analysis of the genetic context of the cluster. In each

strain, the T4SS cluster had a conserved genetic structure (S2B Fig). One of the main differ-

ences between the T4SS gene clusters encoded in plasmids pTet and pCC31 is the sequence

divergence of the cp33 gene [49]. While cp33 present in strain CFSAN096321 showed high

identity with the gene harbored in the pTet plasmid, every other strain possessed high identity

to the cp33 encoded in pCC31 plasmid. Both T4SS have been involved in bacterial conjugation

and are not directly linked to the virulence of C. jejuni and C. coli strains [49]. As shown in Fig

6B, plasmids from closed genome strains CFSAN093226 and CFSAN096297 share significant

similarity with both the pCC31 and pTET plasmids beyond the T4SS gene cluster. For all other

strains, BLASTn analysis of each of our draft genome assemblies identified most of the plasmid

genes found in pCFSAN093226, pCFSAN096297 and pTet-like plasmids, suggesting that all

the T4SS gene clusters identified in these strains are encoded in plasmids as well.

Discussion

In South America, campylobacteriosis is an emerging and neglected foodborne disease. In

countries such as Chile, even though Campylobacter is a notifiable enteric pathogen under

active surveillance by public health agencies, routine stool culture–testing for this pathogen is

rarely performed. This is partially explained by the high costs associated with the culture of

Fig 5. Distribution of virulence-related genes. Binary heatmaps show the presence and absence of virulence genes. Colored cells represent the presence of genes.

cgMLST phylogenetic tree of Fig 1A is shown on the left. Strain names are color coded to highlight C. jejuni strains (green), C. coli clade 1 strains (orange) and C. coli
clade 3 strains (purple).

https://doi.org/10.1371/journal.pntd.0009207.g005

Fig 6. Comparative genomic analysis of plasmids encoding T6SS (A) and T4SS (B) gene clusters. Pangenome BLAST analysis was performed using the Gview server.

T6SS and T4SS gene clusters are highlighted in red brackets.

https://doi.org/10.1371/journal.pntd.0009207.g006

PLOS NEGLECTED TROPICAL DISEASES Genomic analysis of clinical Campylobacter strains from Chile

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009207 February 19, 2021 11 / 18

https://doi.org/10.1371/journal.pntd.0009207.g005
https://doi.org/10.1371/journal.pntd.0009207.g006
https://doi.org/10.1371/journal.pntd.0009207


this bacterium, including the need for special selective media and specific temperature and

microaerophilic growth conditions [50]. As a consequence, there is limited genomic, clinical

and epidemiological data available from the region, leaving an important knowledge gap in

our understanding of the global population structure, virulence potential, and antimicrobial

resistance profiles of clinical Campylobacter strains [1]. Here, we performed an in-depth

genome analysis of the largest collection of clinical Campylobacter strains from Chile, which

accounts for over 35% of the available genome sequences of clinical strains from South

America.

cgMLST analysis provided insight into key similarities and differences in comparison to the

genetic diversity reported for clinical Campylobacter strains worldwide. C. jejuni strains were

highly diverse with CC-21 being the most common. CC-21 is the largest and most widely dis-

tributed CC, representing 18.9% of all C. jejuni strains submitted to the PubMLST database.

The high prevalence of ST-1359 in our study was unexpected, since it is infrequent within the

PubMLST database (0.06%, February 2020). However, ST-1359 has been recognized as a

prominent ST in Israel [51]. ST-45, the second most prevalent ST worldwide (4.2%), was not

identified among our strains. Previous reports from Chile identified four major CCs, including

CC-21 (ST-50), CC-48 (ST-475), CC-257 (ST-257), and CC-353 (ST-353) [9,13]. Our study is

consistent with these reports, except for the high prevalence of ST-1359. Interestingly, cgMLST

analysis suggested that the ST-1359 strains of our study are highly similar (Fig 1). Although

this similarity might indicate that these strains were part of a cluster, they harbored important

differences in terms of isolation date and gene content, including the presence and/or absence

of different antimicrobial resistance determinants and virulence genes (including plasmids).

These data suggest that these strains most likely did not represent an outbreak but correspond

to highly related strains with a possible common source.

Further studies are needed to determine if ST-1359 represents an emergent ST. Interest-

ingly, it has recently been suggested that different geographical regions within Chile harbor

distinct C. jejuni STs. Collado et al. described 14 STs that were exclusively identified in clinical

C. jejuni strains isolated in the South of Chile (Valdivia) that were absent from the strains iso-

lated from Central Chile (Santiago). Ten of these STs were also absent in our study supporting

the notion that there is a differential distribution of clinically relevant STs in the country [9].

Our study also provided the first genome data of clinical C. coli strains from Chile. C. coli is

divided into three genetic clades [52]. Clade 1 strains are often isolated from farm animals and

human gastroenteritis cases while clade 2 and 3 strains are mainly isolated from environmental

sources [52]. We showed that clade 1 strains from CC-828 were most prevalent, which is con-

sistent with the worldwide distribution of this CC [52]. Interestingly, despite the lower amount

of C. coli strains isolated in the 2-year period of our study (n = 12), we were able to identify

strains from the uncommon clade 3. Therefore, larger genomic epidemiological studies are

needed to determine the prevalence of clade 3 strains in Chile and South America.

Interestingly, the genotype frequencies from clinical Campylobacter strains from Chile dif-

fer from the frequencies observed in other countries from South America, including Peru, Bra-

zil and Uruguay. Clonal complex distribution that was more similar to the frequencies

observed in countries such as United States and United Kingdom (Fig 2B). While it is tempt-

ing to speculate that these differences reflect distinct epidemiological scenarios, it could very

well be due to the limited data currently available from South America. It has been previously

noted that there is currently insufficient epidemiological data from South America to provide

an accurate assessment of the burden of campylobacteriosis in the region [1]. This is reflected

in the data currently available in the pubMLST database. There is information regarding only

207 clinical Campylobacter isolates from South America in contrast to 14,747 isolates from the

United Kingdom alone. This highlights the need for larger and more representative studies.
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Notably, two recent genomic epidemiology studies have added valuable data from both Peru

and Brazil. Pascoe et al., sequenced and analyzed the genomes of 62 C. jejuni strains of a longi-

tudinal cohort study of a semi-rural community near Iquitos in the Peruvian Amazon [6].

They found distinct locally disseminated genotypes and evidence of poultry as an important

cause of transmission. In addition, Frazao et al., recently sequenced and analyzed a collection

of 116 C. jejuni strains from Brazil. The collection spanned a period of 20 years and included

strains isolated from animal, human, food and environmental sources [53], identifying high

levels of resistance to ciprofloxacin and tetracycline and potential transmission from nonclini-

cal sources.

Although most Campylobacter infections are self-limiting, antibiotics are indicated for

patients with persistent and severe gastroenteritis, extraintestinal infections, or who are immu-

nocompromised [1]. In Chile there is little information about antimicrobial resistance levels in

Campylobacter spp and most studies are restricted to the Central and Southern regions of the

country [9–12]. The high percentage of C. jejuni strains with a mutation of the gyrA gene,

which confers quinolone resistance, is consistent with recent studies from Chile, reporting cip-

rofloxacin resistance of 30–60% [9,11–13]. One study reported that most resistant strains were

associated with ST-48 [54], but we did not find an association to any particular STs. However,

all of the strains belonging to ST-1359, the most frequent ST identified, harbored this muta-

tion. Since fluoroquinolones are not the first choice antimicrobials for human campylobacter-

iosis, it has been suggested that high levels of resistance might be a consequence of their broad

use in animal husbandry in Latin America [55]. These animal production practices might be

responsible for the dissemination of antibiotic resistance genes among Chilean Campylobacter
strains.

Only few clinical strains harbored the mutation of the 23S rRNA gene, which confers

macrolide resistance, [37]. Tetracycline resistance is widespread among Campylobacter strains

worldwide [35]. Recently, the European Union reported high levels of resistance in C. jejuni
strains (45.4%) and even higher levels in C. coli (68.3%). Tetracycline is especially used in the

poultry industry worldwide [56], and might serve as an important reservoir for resistant strains

[57]. Indeed, it was recently reported that 32.3% of C. jejuni strains isolated from poultry in

Chile were resistant to tetracycline [12]. Our data are consistent with this report, as 22% of the

clinical C. jejuni strains harbored the tetO gene. This potential emergence of resistance high-

lights the need for a permanent surveillance program to implement control measures for tetra-

cycline usage in animal production.

The results of this study provide critical insights on the levels of antimicrobial resistance in

Campylobacter, supporting previous reports that show high resistance against fluoroquino-

lones and tetracycline in the Chilean strains as well as high sensitivity to erythromycin [9,12].

Altogether, these data contribute to our knowledge of Campylobacter’s resistome, supporting

the development of surveillance programs of antimicrobial resistance in Chile.

While the ability of Campylobacter to cause human disease is thought to be multifactorial,

there are several genes associated with its virulence, which role in campylobacteriosis is not

fully understood [58]. Genome analysis showed that clinical C. jejuni strains harbored most of

the known virulence factors described for the species. On the contrary, C. coli strains lacked

most virulence genes described for C. jejuni (Fig 5). Since most of our knowledge regarding

the virulence of Campylobacter comes from studies performed in C. jejuni, this highlights the

need for a better understanding of how C. coli strains cause disease. A limitation of our resis-

tome and virulome analysis is that most of our data comes from draft whole genomes. There-

fore, it is possible that the presence/absence of some loci may have been missed. Nevertheless,

our dataset of 17 closed genomes allowed us to gain insight into the genomic context of the

T4SS and T6SS gene clusters of C. jejuni.
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To date, there is only one T6SS cluster described in Campylobacter [40]. This T6SS has

been shown to contribute to host cell adherence, invasion, resistance to bile salts and oxidative

stress [59–61], and required for the colonization of murine [59] and avian [61] infection mod-

els. We identified a complete T6SS gene cluster in 9 C. jejuni and in 1 C. coli strain (Fig 5). No

correlation was found between presence of the T6SS and any particular ST, which differs from

what has been described in Israel, where most T6SS-positive strains belong to ST-1359 [51].

Although ST-1359 was the most common ST described in this study, none of the strains car-

ried a T6SS.

Two distinct T4SSs have been described in Campylobacter. One T4SS is encoded in the

pVir plasmid of C. jejuni and has been shown to contribute to the invasion of INT407 cells and

the ability to induce diarrhea in a ferret infection model [42,62]. The second T4SS is encoded

in the pTet and pCC31 plasmids of C. jejuni and C. coli, which contributes to bacterial conju-

gation and is not directly linked to virulence [49]. Each of the T4SS gene clusters identified in

our strains showed a high degree of identity to the pTet and pCC31 T4SSs. Suggesting that

they do not directly contribute to virulence, but they might facilitate horizontal gene transfer

events that could lead to increase fitness and virulence.

Altogether, we provide valuable epidemiological and genomic data of the diversity, viru-

lence and resistance profiles of a large collection of clinical Campylobacter strains from Chile.

Further studies are needed to determine the dynamics of transmission of pathogenic Campylo-
bacter to humans and the potential emergence of new virulence and antimicrobial resistance

markers in order to provide actionable public health data to support the design of strengthened

surveillance programs in Chile and South America.
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